
Professional G
Developers Toolkit
Reference Manual

BridgeVIEW User Manual
January 1997 Edition

Part Number 321393A-01
© Copyright 1997 National Instruments Corporation. All r ights reserved.

186,

0,
support@natinst.com
E-mail: info@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

BBS United States: (512) 794-5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

(512) 418-1111

Tel: (512) 795-8248
Fax: (512) 794-5678

Australia 02 9874 4100, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 527 2321, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3
Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,
Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886,
Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 120
U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

Fax-on-Demand Support

Telephone Support (U.S.)

International Offices

Important Information

ng
enced
at do

nty
r free.

tside
pping

ly
serves
. The
ble for

ction
uments
ovided
he

ties, or

nical,

abil ity

on the
g

itional
s injury
uments
ed to
Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programmi
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media th
not execute programming instructions if National Instruments receives notice of such defects during the warra
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or erro

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the ou
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shi
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been careful
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments re
the right to make changes to subsequent editions of this document without prior notice to holders of this edition
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be lia
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA , PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments wil l apply regardless of the form of action, whether in contract or tort, including negligence. Any a
against National Instruments must be brought within one year after the cause of action accrues. National Instr
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty pr
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow t
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third par
other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part,
without the prior written consent of National Instruments Corporation.

Trademarks

LabVIEW® and BridgeVIEW™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reli
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors
part of the user or application designer. Any use or application of National Instruments products for or involvin
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all trad
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent seriou
or death should always continue to be used when National Instruments products are being used. National Instr
products are NOT intended to be a substitute for any form of established process, procedure, or equipment us
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v Professional G Developers To
Contents
xiii
xiii
xiv
xiv
xv
.xvi
xvi

1-1
1-2
-2
-3

1-4

2-1
2-
-5
-5
8
-8

-9
-10

.3-1
About This Manual
Organization of This Manual ...

Software Engineering Concepts ..
Professional Development Tools...
Appendices, Glossary, and Index..

Conventions Used in This Manual...
Related Documentation...
Customer Communication ...

Chapter 1

Introduction
Required System Configuration...
Installation and Configuration ...

Installation ...1
Configuration...1

Overview..1-3
Features of the Toolkit ...

Chapter 2

Development Models
Common Development Pitfalls..
Lifecycle Models ...4

Code and Fix Model ..2
Waterfall Model...2
Modified Waterfall Model...2-
Prototyping ..2

G Prototyping Methods...2
Spiral Model ..2

Summary ..2-12

Chapter 3

Incorporating Quality into the Development Process
Quality Requirements ...
olkit Reference Manual

Contents

3-2
3-2
-3
-3
3-4
3-4
3-
-6
-7

-7
-8
-9
-10

. 3-
3-12
3-13
3-13
-13
14
5

-1
4-2
-4
4-6
-7
-9
4-10
4-11
4-11

-2
-3
-4
4

Configuration Management...
Source Code Control ...
Managing All Project-Related Files.. 3
Retrieving Old Versions of Files .. 3
Tracking Changes ...
Change Control ...

Testing Guidelines...5
Black Box and White Box Testing ... 3
Unit, Integration, and System Testing .. 3

Unit Testing .. 3
Integration Testing.. 3
System Testing ... 3

Formal Methods of Verification ... 3
Style Guidelines...3-10
Design Reviews ..11
Code Walkthroughs ...
Postmortem Evaluation ...
Software Quality Standards...

International Organization for Standards (ISO) 9000....................................... 3
U.S. Food & Drug Administration (FDA) Standards 3-
Capability Maturity Model (CMM).. 3-1
Institute of Electrical and Electronic Engineers (IEEE) Standards................... 3-16

Chapter 4

Prototyping and Design Techniques
Clearly Define the Requirements of Your Application... 4
Top-Down Design ...

Example—A Data Acquisition System... 4
Bottom-Up Design...

Example—An Instrument Driver.. 4
Designing for Multiple Developers ... 4
Front Panel Prototyping...
Performance Benchmarking ..
Identify Common Operations ..

Chapter 5

Scheduling and Project Tracking
Estimation.. 5-1

Lines of Code/Number of Nodes Estimation.. 5
Problems with Lines of Code and Numbers of Nodes 5

Effort Estimation... 5
Wideband Delphi Estimation.. 5-
Professional G Developers Toolkit Reference Manual vi © National Instruments Corporation

Contents

-5
.5-6
5-7

5-8

6-1
6-2
-2
-3
6-
6-5
-5
-5
-6

7-
3

.7-4
7-4
7-5
7-6
7-6
7-7
7-8
.7-8
7-8
7-8
7-9
7-10
-11
-11
-12

..7-

7-17
-17

7-18
Other Estimation Techniques..5
Mapping Estimates to Schedules ..
Tracking Schedules Using Milestones...

Responding to Missed Milestones...

Chapter 6

Creating Documentation
Developing Design-Related Documentation ...
Developing User Documentation...

Documentation for a Library of SubVIs..6
Documentation for an Application..6

Creating Help Files ..4
VI and Control Descriptions ..

VI Description ...6
Self-Documenting Front Panels ..6
Control and Indicator Descriptions ...6

Chapter 7

Using Consistent Style�The G Style Guide
Hierarchy on Disk ..1

Hierarchy with VI Libraries ..7-
Front Panels with Style ...

Consistency..
Text..
Color ..
Graphics and Custom Controls..
Front Panel Layout ..
Sizing and Positioning Front Panels..

Controls and Indicators ...
Descriptions...
Labels ..
Enumerations vs. Rings ...
Default Values, Ranges, and Coercion..
Attribute Nodes ...7
Key Navigation..7
Local Variables..7

VI Setup ...7-13
Connector Panes ..14
Icons...7-15
The Block Diagram..

Wiring Etiquette ..7
Labeling...
© National Instruments Corporation vii Professional G Developers Toolkit Reference Manual

Contents

7-19
19
-19

-19
7-20
-21
-22

-23
-24
7-25
25
-25

-26
7-27
-29

8
-3
8-4
-4
-4
-5

-5

. 11-1
-2
11-2
11-3
Execution Sequence ..
Left-to-Right Layouts ... 7-
Data Dependency.. 7
Adding Common Threads .. 7
Sequence Structures..
Watch Out for Missing Dependencies.. 7

Check for Errors .. 7
Sizing and Positioning of Block Diagrams... 7
Optimization.. 7
Code Interface Nodes..

CIN Description Contents .. 7-
CIN Source Code.. 7

Style Checklist... 7-26
VI Checklist .. 7
Front Panel Checklist ..
Block Diagram Checklist .. 7

Chapter 8

VI Metrics Tool
Additional Statistics...-3

Block Diagram Statistics... 8
User Interface Statistics ..
Global/Local Statistics .. 8
CIN/Shared Library Statistics ... 8
SubVI Interface Statistics.. 8

Files in vi.lib.. 8-5
Saving Metric Information .. 8

Chapter 9

Print Hierarchy Tool

Chapter 10

File Manager Tool

Chapter 11

Source Code Control Tools
General Source Code Control Concepts...
Using Individual Files Instead of VI Libraries (LLBs) ... 11
Source Code Control Configuration..

Selecting the Source Code Control System ..
Professional G Developers Toolkit Reference Manual viii © National Instruments Corporation

Contents

1-3
1-4

-5
-6

-7
-8

1-9
-9

-9
-10
.11-10
1-10

11-11
11-13
1-13
1-14
11-15
.
1-16
1-17
1-18
1-18
-20
1-20

11-22
..11-
1-23
1-24

11-25
-25
1-26
-26

1-27
1-27
11-27
-28
-29

11-
11-29
1-29

11-30
-31
Features of the Built-In Source Code Control System........................1
Features of Third-Party Source Code Control Systems......................1

Microsoft Visual SourceSafe for Windows 95/NT11-5
Administration (Administrator Only)..11

Administration of Visual SourceSafe ...11
Administration of the Built-In System..11
Edit Platform List..11

Local Configuration (All Users)..1
User Configuration of Visual SourceSafe...11
User Configuration of the Built-In System...11
Work Directory and Platform Configuration......................................11

Managing Source Code Control Projects..
Source Code Control Projects Overview...1
Creating a Project ..
Updating a Project ...
Removing Files from a Project..1
Adding Extra Files to a Project ...1
Project Groups ...

Accessing Files ...11-16
Retrieving Files ...1

File Status..1
File Properties ...1

Checking Out Files ..1
Use the History Window to Document Changes11

Checking In Files...1
SCC User Name ..

Advanced Features...22
Deleting Files from SCC ...1
SCC File History ...1
System History ..

Master File List (sccfiles.lst)...11
Accessing Previous Versions of Files ...1

Built-In System ...11
Third-Party Systems..1

Labeling Versions of Files for Easy Retrieval ..1
Creating Reports ..

Built-In System ...11
Microsoft Visual SourceSafe ..11

Multiplatform Issues ..29
Cross Platform Source Code Control ..
Filename Limitations...1
Platform-Dependent SCC Files ...

Platform-Specific Files ...11
© National Instruments Corporation ix Professional G Developers Toolkit Reference Manual

Contents

-31
-32

-6
-10

-16

4-5
4-5
-6
-8

-2
3
-4
-18
-24

1

-1

0-1

1-3
Variants of a File for Different Platforms... 11
Retrieving Files for a Different Platform ... 11

Appendix A

References

Appendix B

Customer Communication

Glossary

Index

Figures
Figure 2-1. The Waterfall Model .. 2
Figure 2-2. The Spiral Model ... 2

Figure 3-1. Capability Maturity Model .. 3

Figure 4-1. Mapping pseudo-code into a G data structure.
Figure 4-2. Mapping pseudo-code into actual G code. ...
Figure 4-3. Data Flow for a Generic Data Acquisition Program 4
Figure 4-4. VI hierarchy for the Tektronix 370A ... 4

Figure 7-1. A directory hierarchy. .. 7
Figure 7-2. Top-Level VIs Listed at the Top of a VI Library 7-
Figure 7-3. A mixture of directories and VI libraries. .. 7
Figure 7-4. Good Wiring in a Simple Block Diagram .. 7
Figure 7-5. A Well-Placed Front Panel and Block Diagram 7

Figure 8-1. VI Metrics Tool Dialog Box .. 8-

Figure 9-1. Print Hierarchy Tool Dialog Box ... 9

Figure 10-1. File Manager Tool Dialog Box .. 1

Figure 11-1. G Source Code Control Tools Work with Built-In and
Third-Party Systems ... 1
Professional G Developers Toolkit Reference Manual x © National Instruments Corporation

Contents

-11
Tables
Table 2-1. Risk Exposure Analysis Example ..2
© National Instruments Corporation xi Professional G Developers Toolkit Reference Manual

© National Instruments Corporation xiii Professional G Developers Too
About
This

Manual
s

en
are
r

ing
is

s

are
The Professional G Developers Toolkit Reference Manual describes the
features, functions, and operation of the Professional G Developer
Toolkit. With this toolkit, you can apply software engineering
techniques to G code development. This toolkit includes software
extensions to BridgeVIEW and LabVIEW that provide important
software engineering tools.

In addition, this manual describes many of the issues that arise wh
developing large applications and provides a basic survey of softw
engineering techniques you might find useful when developing you
own projects.

Organization of This Manual

The Professional G Developers Toolkit Reference Manual is divided
into two sections. Chapters 1 through 7 describe software engineer
concepts. Chapters 8 through 11 describe the tools included with th
toolkit.

Software Engineering Concepts
• Chapter 1, Introduction, describes the installation procedure and

introduces you to the features of the Professional G Developer
Toolkit.

• Chapter 2, Development Models, provides examples of some
common development pitfalls and describes a number of softw
engineering lifecycle models.

• Chapter 3, Incorporating Quality into the Development Process,
describes strategies for producing quality software.

• Chapter 4, Prototyping and Design Techniques, gives you pointers
for project design, including programming approaches,
prototyping, and benchmarking.

• Chapter 5, Scheduling and Project Tracking, describes techniques
for developing estimates of development time and using those
estimates to create schedules.
lkit Reference Manual

About This Manual

and

l

in

r

s

• Chapter 6, Creating Documentation, describes techniques for
documenting your software.

• Chapter 7, Using Consistent Style—The G Style Guide, describes
some recommended practices for good programming technique
style.

Professional Development Tools
• Chapter 8, VI Metrics Tool, describes how to use the VI Metrics too

to measure the complexity of your application.

• Chapter 9, Print Hierarchy Tool, describes how the Print Hierarchy
tool makes it easy to print out VI documentation for VIs in your
hierarchy.

• Chapter 10, File Manager Tool, describes how the File Manager
tool makes it possible to easily copy, rename, or delete files with
VI Libraries (LLBs).

• Chapter 11, Source Code Control Tools, describes the G Source
Code Control tools.

Appendices, Glossary, and Index
• Appendix A, References, provides a list of references for further

information about software engineering concepts.

• Appendix B, Customer Communication, contains forms you can use
to request help from National Instruments or to comment on ou
products and manuals.

• The Glossary contains an alphabetical list and description of term
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in
this manual, including the page where you can find each one.
Professional G Developers Toolkit Reference Manual xiv © National Instruments Corporation

About This Manual

em,

nce,

ter

the
ms,
d for

ets
r

 drive

rts

d
Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes a parameter, menu name, palette name, menu it
return value, function panel item, or dialog box button or option.

italic Italic text denotes mathematical variables, emphasis, a cross-refere
or an introduction to a key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that you should literally en
from the keyboard. Sections of code, programming examples, and
syntax examples also appear in this font. This font also is used for
proper names of disk drives, paths, directories, programs, subprogra
subroutines, device names, variables, filenames, and extensions, an
statements and comments taken from program code.

<> Angle brackets enclose the name of a key on the keyboard—for
example, <PageDown>.

- A hyphen between two or more key names enclosed in angle brack
denotes that you should simultaneously press the named keys—fo
example, <Control-Alt-Delete>.

<Control> Key names are capitalized.

» The » symbol leads you through nested menu items and dialog box
options to a final action. The sequence
File»Page Setup»Options»Substitute Fonts directs you to pull down
the File menu, select the Page Setup item, select Options, and finally
select the Substitute Fonts option from the last dialog box.

paths Paths in this manual are denoted using backslashes (\) to separate
names, directories, and files, as in
C:\dir1name\dir2name\filename for Windows.

This icon to the left of bold italicized text denotes a note, which ale
you to important information.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, an
terms are listed in the Glossary.
© National Instruments Corporation xv Professional G Developers Toolkit Reference Manual

About This Manual

d

cts
 our
ake
Related Documentation

The following documentation contains information that you might fin
helpful as you read this manual.

• BridgeVIEW User Manual

• LabVIEW User Manual

• G Programming Reference Manual

• BridgeVIEW Online Reference, available by selecting
Help»Online Reference

• LabVIEW Online Reference, available by selecting
Help»Online Reference

See Appendix A, References, for a list of additional documents you
might find helpful as you read this manual and work on your
development projects.

Customer Communication

National Instruments wants to receive your comments on our produ
and manuals. We are interested in the applications you develop with
products, and we want to help if you have problems with them. To m
it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in
Appendix B, Customer Communication, at the end of this manual.
Professional G Developers Toolkit Reference Manual xvi © National Instruments Corporation

© National Instruments Corporation 1-1 Professional G Developers Too
Chapter

1
Introduction
u to

r
d

est

CC)
s

 or

in

n
.

e
This chapter describes the installation procedure and introduces yo
the features of the Professional G Developers Toolkit.

Required System Configuration

The Professional G Developers Toolkit works with LabVIEW 4.0.1 o
BridgeVIEW 1.0. If you have an older version of LabVIEW, you nee
to upgrade. If you have LabVIEW 4.0, the upgrade to 4.0.1 is free.
Contact National Instruments for information on upgrading to the lat
version.

This toolkit is available for all platforms except Windows 3.1.
Windows 3.1 is not supported because the Source Code Control (S
tools require that virtual instruments (VIs) be stored in individual file
rather than in libraries (LLBs). You can use the File Manager tool to
convert LLBs to directories.

Note: While you cannot use this toolkit under Windows 3.1, you still can develop
for customers who need Windows 3.1 support. You can use Windows 95
NT as your development platform and save your VIs in individual files.
When you need to send software to a Windows 3.1 user, save your VIs
LLBs.

The SCC tools cannot manage multiple files with the same name. I
fact, the tools help prevent you from using files with the same name
This is to help you avoid accidentally linking a VI to a subVI with th
same name.
lkit Reference Manual

Chapter 1 Introduction

g

.

am

.

ant
rom
e
es,

 use
Installation and Configuration

You can install the Professional G Developers Toolkit on the followin
platforms:

• Windows 95 and NT

• Macintosh and Power Macintosh

• Solaris for Sun SPARCstation

• HP-UX

Note: Some virus detection programs might interfere with the installer program
Turn off the automatic virus checker before running the installer. After
installation, check your hard disk for viruses and turn on the automatic
virus checker.

Installation
The Professional G Developers Toolkit CD contains the installer
programs for all of the platforms listed above. Run the installer progr
for your platform. The following list includes the names of the setup
files and the directories in which they are located.

• (Windows 95 and NT) setup.exe in the win95_nt directory

• (68K Macintosh) ProDev 68K Installer in the 68K Macintosh
folder

• (Power Macintosh) ProDev PM Installer in the Power Macintosh
folder

• (Solaris) install in the solaris directory

• (HP-UX) INSTALL in the HPUX directory

When prompted for the destination directory, select the directory in
which you have BridgeVIEW 1.0 or LabVIEW 4.01 or later installed

Also, to use the Source Code Control tools, you must decide if you w
to install as a user or as an administrator. Usually only one person f
a development team should be designated as the administrator. Th
administrator installation includes everything the user installation do
with the addition of the Source Code Control»Administration
command that allows the administrator to set up the SCC system for
by the development team.
Professional G Developers Toolkit Reference Manual 1-2 © National Instruments Corporation

Chapter 1 Introduction

rce
cal

 a

pose

t
trol

t

r
efine
as a

ly.
rge

ign

ing

st
 is
f the
Configuration
After installation is complete, the administrator must set up the Sou
Code Control system for the other users. All users must perform lo
configuration. See the Administration (Administrator Only) and Local
Configuration (All Users) sections in Chapter 11, Source Code Control
Tools for more details.

Overview

LabVIEW and BridgeVIEW are flexible tools for designing test,
measurement, and process monitoring and control applications with
graphical programming language called G.

National Instruments designed G as an easy-to-use and general pur
language. Because G is a fully functional programming language,
LabVIEW and BridgeVIEW handle complex applications that canno
be developed easily using more restrictive data acquisition and con
applications. G emphasizes hierarchical design and reuse with its
concept of a VI. Each VI is a complete program consisting of a fron
panel, which provides a user interface, and a block diagram, which
represents the source code. The block diagram describes the
relationship and interactions between inputs and outputs in the use
interface. Every VI can be a reusable component because you can d
a calling interface and a representative icon so the VI can be called
subroutine, or subVI, from other VIs.

Because VIs can be stored in separate files, it is possible to have
multiple developers work on different parts of a project simultaneous
As with other programming languages, developing and managing la
applications with multiple developers requires more rigorous
methodologies than are required with simple applications. Poor des
and development techniques can lead to applications that are not
developed on time, are not easy to maintain, and contain programm
errors that prevent the software from working reliably.

Software engineering is the field of study related to defining the be
processes for developing software, and the main goal of this toolkit
to help users apply these techniques to G code development. Most o
techniques developed in software engineering apply to graphical
programming languages just as well as they apply to textual
programming languages.
© National Instruments Corporation 1-3 Professional G Developers Toolkit Reference Manual

Chapter 1 Introduction

for
ools

nt

ols
h

n

ts

y
y-
es.
s,
y

 of

nt
ls.
Features of the Toolkit

The Professional G Developers Toolkit is designed to simplify
development of high-end, large-scale applications. It includes tools
managing and tracking code in large development projects. These t
are ideal for large teams of developers, individual users developing
large suites of VIs, and G programmers who must adhere to stringe
quality standards such as those required by ISO 9000 or FDA.

The toolkit includes features that help you do the following:

• Control source code—Integrated Source Code Control (SCC) to
are accessible from the menus of LabVIEW or BridgeVIEW. Wit
these tools, you can share VIs with multiple developers.

You can check out files to begin development and check in files
when you are ready to share your changes with others. This
check out/check in system ensures that only one developer
modifies a specific VI at a time. The G SCC tools are built on a
open Application Programming Interface (API) so that they can
communicate with either a built-in SCC system available to all
platforms or other third-party SCC systems. This toolkit suppor
the built-in system and Microsoft Visual SourceSafe for
Windows 95/NT.

• Measure complexity—The VI Metrics tool provides a simple wa
to measure the complexity of an application similar to the widel
used Source Lines of Code (SLOCs) metrics for textual languag
With this tool, you also can view many other statistics about VI
all of which are useful in either examining your VIs to find overl
complex areas or in establishing baselines for estimating future
projects.

• Print documentation—The Print Hierarchy tool makes it easy to
print out documentation for VIs in your hierarchy. This tool
provides a lot of flexibility in printing out VI documentation in a
variety of formats.

• Edit VI libraries—The File Manager tool automates the process
copying, renaming, or deleting files within VI Libraries (LLBs).
You can use this tool to convert LLBs to directories, an importa
step toward managing your VIs with the Source Code Control too
Professional G Developers Toolkit Reference Manual 1-4 © National Instruments Corporation

© National Instruments Corporation 2-1 Professional G Developers Too
Chapter

2
Development Models
alls

ram
th
ab
.

 out

t

re

as
rly

ts
n
This chapter provides examples of some common development pitf
and describes a number of software engineering lifecycle models.

G, the graphical programming language of LabVIEW and
BridgeVIEW, makes it easy to assemble components of data
acquisition, test, and control systems. Because it is so easy to prog
in G, you might be tempted to begin developing VIs immediately wi
relatively little planning. For very simple applications, such as quick l
tests or monitoring applications, this approach might be appropriate
However, for larger development projects, good planning becomes
vital.

Common Development Pitfalls

If you have developed large applications before, you probably have
heard some of the following quotes. Most of these approaches start
with good intentions and seem quite reasonable. However, these
approaches are often unrealistic and can lead to delays, quality
problems, and poor morale among team members.

• “I haven’t really thought it through, but I’d guess that the projec
you are requesting can be completed in…”

Off-the-cuff estimates rarely are correct because they usually a
based on an incomplete understanding of the problem. When
developing for someone else, you might each have different ide
about requirements. To estimate accurately, you both must clea
understand the requirements and work through at least a
preliminary high-level design so you understand the componen
you need to develop. Techniques for estimation are described i
more detail in Chapter 5, Scheduling and Project Tracking.
lkit Reference Manual

Chapter 2 Development Models

so

a of

to
g

t

ers

ve

ge.
,

n,

nd

ed.”

 an
• “I think I understand the problem the customer wants to solve,
I’m ready to dive into development.”

There are two problems with a statement like this. First, lack of
consensus on project goals results in schedule delays. Your ide
what a customer wants might be based on inadequate
communication. Developing a requirements document and
prototyping a system, both described later, can be useful tools
clarify goals. A second problem with this statement is that divin
into development might mean writing code without a detailed
design. Just as builders do not construct a building without
architectural plans, developers should not begin building an
application without a detailed design. See the Code and Fix Model
section later in this chapter for more information.

• “We don’t have time to write detailed plans—we’re under a tigh
schedule, so we need to start developing right away.”

This situation is similar to the previous example, but is such a
common mistake that it is worth emphasizing. Software develop
frequently skip important planning because it does not seem as
productive as developing code. As a result, you develop VIs
without a clear idea of how they all fit together, and you might ha
to rework sections as you discover mistakes. Taking the time to
develop a plan can prevent costly rework at the development sta
See the Lifecycle Models section later in this chapter and Chapter 4
Prototyping and Design Techniques, for better approaches to
developing software.

• “Let’s try for the whole ball of wax on the first release—if it
doesn’t do everything, it won’t be useful.”

In some cases, this might be correct. However, in most
applications, developing in stages is a better approach. When
analyzing the requirements for a project, you should prioritize
features. You might be able to develop an initial system that
provides useful functionality in a shorter time at a lower cost. The
you can add features incrementally. The more you try to
accomplish in a single stage, the greater the risk of falling behi
schedule. Releasing software incrementally reduces schedule
pressures and ensures timely software release. See the Lifecycle
Models section later in this chapter for more information.

• “If I can just get all of the features in within the next month, I
should be able to fix any problems before the software is releas

To release high-quality products on time, maintain quality
standards throughout development. Do not build new features on
Professional G Developers Toolkit Reference Manual 2-2 © National Instruments Corporation

Chapter 2 Development Models

the
e of
ost
d
r

ng
e

e

ch

 the

e

e

at
e

at
 to

y to

 for
in
unstable foundation and rely on correcting problems later. This
exacerbates problems and increases cost. While you might
complete all of the features on time, the time required to correct
problems in both the existing and new code can delay the releas
the product. You should prioritize features and implement the m
important ones first. Once the most important features are teste
thoroughly, you can choose to work on lower-priority features o
defer them to a future release. See Chapter 3, Incorporating Quality
into the Development Process, for more details on techniques for
producing high-quality software.

• “We’re behind in our project—let’s throw more developers onto
the problem.”

In many cases, doing this actually can delay your project. Addi
developers to a project requires time for training, which can tak
away time originally scheduled for development. Add resources
earlier in the project rather than later. Also, there is a limit to th
number of people who can work on a project effectively. With a
few people, there is less overlap—you partition the project so ea
person works on a particular section. The more people you add,
more difficult it becomes to avoid overlap. Chapter 4, Prototyping
and Design Techniques, describes methods for partitioning softwar
for multiple developers. Chapter 3, Incorporating Quality into the
Development Process, describes configuration management
techniques that can help minimize overlap.

• “We’re behind in our project, but we still think we can get all th
features in by the specified date.”

When you are behind in a project, it is important to recognize th
fact and deal with it. Assumptions that you can make up lost tim
can defer choices until it becomes costly to deal with them. For
example, if you realize in the first month of a six-month project th
you are behind, you could sacrifice planned features or add time
the overall schedule. If, in the fifth month, you find the schedule
slipping, other groups might have made decisions that are costl
change.

When you realize you are behind, consider features that can be
dropped or postponed to subsequent releases, or adjust the
schedule. Do not ignore the delay or sacrifice testing scheduled
later in the process. Estimating project schedules is described
more detail in Chapter 5, Scheduling and Project Tracking.
© National Instruments Corporation 2-3 Professional G Developers Toolkit Reference Manual

Chapter 2 Development Models

e
ng

s

. A

e

wn
 and
n
ls

uld

The
Numerous other problems can arise when developing software. Th
following list includes some of the fundamental elements of developi
quality software on time:

• Spend sufficient time planning.

• Make sure the whole team thoroughly understands the problem
that must be solved.

• Have a flexible development strategy that minimizes risk and
accommodates changes.

Lifecycle Models

Software development projects are complex. To deal with these
complexities, developers have collected a core set of development
principles. These principles define the field of software engineering
major component of this field is the lifecycle model. The lifecycle
model describes the steps you follow to develop software—from th
initial concept stage to the release, maintenance, and subsequent
upgrading of the software.

Currently, there are many different lifecycle models. Each has its o
advantages and disadvantages in terms of time-to-release, quality,
risk management. This section describes some of the most commo
models used in software engineering. Many hybrids of these mode
exist, so use the parts you believe will work for your project.

While this section is theoretical in its discussion, in practice you sho
consider all of the steps that these models encompass. You should
consider when and how you decide that the requirements and
specifications are complete and how you handle changes to them.
lifecycle model serves as a foundation for the entire development
process. Good choices in this area can improve the quality of the
software you develop and decrease the time it takes to develop it.
Professional G Developers Toolkit Reference Manual 2-4 © National Instruments Corporation

Chapter 2 Development Models

le

ay

s in

n a

re

s
els.

es,

iled

Code and Fix Model
The code and fix model probably is the most frequently used
development methodology in software engineering. It starts with litt
or no initial planning. You immediately start developing, fixing
problems as you find them, until the project is complete.

Code and fix is a tempting choice when you are faced with a tight
development schedule because you begin developing code right aw
and see immediate results.

Unfortunately, if you find major architectural problems late in the
process, you might have to rewrite large parts of your application.
Alternative development models can help you catch these problem
the early concept stages when it is much less expensive to make
changes. Accommodating changes in the requirements and
specifications stage of a project is easier than after you have writte
lot of code.

The code and fix model is only appropriate for small projects that a
not intended to serve as the basis for future development.

Waterfall Model
The waterfall model is the classic model of software engineering. It ha
deficiencies, but it serves as a baseline for many other lifecycle mod

The pure waterfall lifecycle consists of several non-overlapping stag
which are listed below. It begins with the software concept and
continues through requirements analysis, architectural design, deta
design, coding, testing, and maintenance. Figure 2-1 illustrates the
stages of the waterfall lifecycle model.
© National Instruments Corporation 2-5 Professional G Developers Toolkit Reference Manual

Chapter 2 Development Models

 the

her

sis

 the
he

e

ds,
ries.

n
ow
Figure 2-1. The Waterfall Model

• System requirements—Establishes the components for building
system. This includes the hardware requirements (number of
channels, acquisition speed, and so on), software tools, and ot
necessary components.

• Software requirements—Concentrates on the expectations for
software functionality. You identify which of the system
requirements are affected by the software. Requirements analy
might include determining interaction needed with other
applications and databases, performance requirements, user
interface requirements, and so on.

• Architectural design—Determines the software framework of a
system to meet the specified requirements. The design defines
major components and their interaction, but it does not define t
structure of each component. In addition to the software
framework, in the architectural design phase, you determine th
external interfaces and tools that will be used in the project.
Examples include decisions on hardware, such as plug-in boar
and external pieces of software, such as databases or other libra

• Detailed design—Examines the software components defined i
the architectural design stage and produces a specification for h
each component is implemented.

System
Requirements

Software
Requirements

Architectural
Design

Detailed
Design

Coding

Testing

Maintenance
Professional G Developers Toolkit Reference Manual 2-6 © National Instruments Corporation

Chapter 2 Development Models

ard

nd
 you
ext

e

ly
se it
s

l

s.

ap

rors

(for
ver,

s

 not
nt
n is
• Coding—Implements the detailed design specification.

• Testing—Determines whether the software meets the specified
requirements and finds any errors present in the code.

• Maintenance—Performed as needed to address problems and
enhancement requests after the software is released. In some
organizations, each change is reviewed by a change control bo
to ensure that quality is maintained. You also can apply the full
waterfall development cycle model when you implement these
change requests.

In each stage, you create documents that explain your objectives a
describe the requirements for that phase. At the end of each stage,
hold a review to determine whether the project can proceed to the n
stage. Also, you can incorporate prototyping into any stage from th
architectural design and after. See the Prototyping section later in this
chapter for more information.

The waterfall lifecycle model is one of the oldest models and is wide
used in government projects and in many major companies. Becau
emphasizes planning in the early stages, it helps catch design flaw
before they are developed. Also, because it is very document- and
planning-intensive, it works well for projects in which quality contro
is a major concern.

Many people believe you should not apply this model to all situation
For example, with the pure waterfall model you must state the
requirements before beginning the design, and you must state the
complete design before you begin coding. That is, there is no overl
between stages. In real-world development, however, you might
discover issues during the design or coding stages that point out er
or gaps in the requirements.

The waterfall method does not prohibit returning to an earlier phase
example, from the design phase to the requirements phase). Howe
this involves costly rework—each completed phase requires formal
review and extensive documentation development. Thus, oversight
made in the requirements phase are expensive to correct later.

Because the actual development comes late in the process, you do
see results for a long time. This can be disconcerting to manageme
and customers. Many people also find the amount of documentatio
excessive and inflexible.
© National Instruments Corporation 2-7 Professional G Developers Toolkit Reference Manual

Chapter 2 Development Models

use
 do
ges

her

le to
.
ed

er

 you
r

n

 you
g
ign

rly

 you

pe is
ld
While the waterfall model has its weaknesses, it is instructive beca
it emphasizes important stages of project development. Even if you
not apply this model, you at least should consider each of these sta
and its relationship to your own project.

Modified Waterfall Model
Many engineers recommend modified versions of the waterfall
lifecycle. These modifications tend to focus on allowing some of the
stages to overlap, reducing the documentation requirements, and
reducing the cost of returning to earlier stages to revise them. Anot
common modification is to incorporate prototyping into the
requirements phases, as described in the next section.

Overlapping stages such as requirements and design make it possib
feed information from the design phase back into the requirements
However, this can make it more difficult to know when you are finish
with a given stage, and, consequently, it is more difficult to track
progress. Without distinct stages, problems might cause you to def
important decisions until late in the process when they are more
expensive to correct.

Prototyping
One of the main problems with the waterfall model is that the
requirements are often not completely understood in the early
development stages. When you reach the design or coding stages,
begin to see how everything works together, and you might discove
that you need to adjust requirements.

Prototyping can be an effective tool for demonstrating how a design
might address a set of requirements. You can build a prototype, the
adjust the requirements and revise the prototype several times until
have a clear picture of your overall objectives. In addition to clarifyin
the requirements, the prototype also defines many areas of the des
simultaneously.

The pure waterfall model does allow for prototyping in the later
architectural design stage and subsequent stages, but not in the ea
requirements stages.

There are drawbacks with prototyping. First, because it appears that
have a working system very quickly, customers might expect a
complete system sooner than is possible. In most cases, the prototy
built on compromises that allow it to come together quickly, but cou
Professional G Developers Toolkit Reference Manual 2-8 © National Instruments Corporation

Chapter 2 Development Models

e

 for
u
e
ps
es,
ou

er
 as

u
d

ider
.
ay
r
ont
this
 in

sfy

n
prevent the prototype from being an effective basis for future
development. You need to decide early whether you will use the
prototype as a basis for future development. All parties should agre
with this decision before development begins.

You should be careful that prototyping does not become a disguise
a code and fix development cycle. Before you begin prototyping, yo
should gather clear requirements and create a design plan. Limit th
amount of time you will spend prototyping before you begin. This hel
to avoid overdoing the prototyping phase. As you incorporate chang
you should update the requirements and the current design. After y
finish prototyping, you might consider falling back to one of the oth
development models. For example, you might consider prototyping
part of the requirements or design phases of the waterfall model.

G Prototyping Methods
There are a number of ways to prototype a system.

In systems with I/O requirements that might be difficult to satisfy, yo
can develop a prototype to test the control and acquisition loops an
rates.

Systems with many user interface requirements are perfect for
prototyping. Determining the method you will use to display data or
prompt the user for settings can be difficult on paper. Instead, cons
designing VI front panels with the controls and indicators you need
You might leave the block diagram empty and just talk through the w
the controls would work and how various actions would lead to othe
front panels. For more extensive prototypes, you could even tie the fr
panels together; however be careful not to get too carried away with
process. In I/O prototypes, random data can simulate data acquired
the real system.

If you are bidding on a project for a client, this can be an extremely
effective way to discuss with the client how you might be able to sati
his or her requirements. Because you can add and remove controls
quickly (especially if you avoid developing block diagrams), you ca
help customers clarify their requirements.
© National Instruments Corporation 2-9 Professional G Developers Toolkit Reference Manual

Chapter 2 Development Models

 the
e
 the

ral

al to
o
e
nd

uct
our
Spiral Model
The spiral model is a popular alternative to the waterfall model. It
emphasizes risk management so you find major problems earlier in
development cycle. In the waterfall model, you have to complete th
design before you begin coding. With the spiral model, you break up
project into a set of risks that need to be handled. You then begin a
series of iterations in which you analyze the most important risk,
evaluate options for resolving the risk, address the risk, assess the
results, and plan for the next iteration. Figure 2-2 illustrates the spi
lifecycle model.

Figure 2-2. The Spiral Model

Risks are any issues that are not clearly defined or have the potenti
affect the project adversely. For each risk, you need to consider tw
things: How likely it is, and how bad it is for it to occur. You might us
a scale of 1 to 10 for each of these, with 1 being unlikely to occur a
not bad if it occurs, and 10 being extremely likely to occur and
catastrophic to the project if it occurs. Your risk exposure is the prod
of these. You can use a table to keep track of the top risk items of y
project. See Table 2-1 for an example of how to do this.

Prototype

Determine objectives,
alternatives, and constraints

Evaluate alternatives
and risks

Plan next phase Develop and test

Risk
Analysis Cumulative

Cost

Commit to
next cycle
Professional G Developers Toolkit Reference Manual 2-10 © National Instruments Corporation

Chapter 2 Development Models

ure
the
ou
t

a

tem
the
e of

 rate

. In

r to
 by
 from

d on

he
ate
se
In general, you should address the risks with the highest risk expos
first. In this example, the first spiral should address the potential for
data acquisition rates being too high to handle. After the first spiral, y
may have demonstrated that the rates are not too high, or you migh
have to change to a different configuration of hardware to meet the
acquisition requirements. Each iteration might identify new risks. In
this example, using more powerful hardware might make high cost
new, more likely, risk.

For example, assume that you are designing a data acquisition sys
with a plug-in data acquisition card. In this case, the risk is whether
system can acquire, analyze, and display data quickly enough. Som
the constraints in this case are requirements for a specific sampling
and precision, and system cost.

After determining the options and constraints, you evaluate the risks
this example, you could create a prototype or benchmark to test
acquisition rates. After you see the results, you can evaluate whethe
continue with the approach or choose a different option. You do this
reassessing the risks based on the new knowledge you have gained
building the prototype.

In the final phase, you evaluate the results with the customer. Base
customer input, you can reassess the situation, decide on the next
highest risk, and start the cycle over. This process continues until t
software is finished or you decide the risks are too great and termin
development. You might find that none of the options is viable becau
each is too expensive, time-consuming, or does not meet the
requirements.

Table 2-1. Risk Exposure Analysis Example

ID Risk Probability Loss
Risk

Exposure
Risk Management

Approach

1 Acquisition rates too high 5 9 45 Develop prototype
to demonstrate feasibility

2 File format may not
be efficient

5 3 15 Develop benchmarks
to show speed of data
manipulation

3 Uncertain user interface 2 5 10 Involve customer,
develop prototype
© National Instruments Corporation 2-11 Professional G Developers Toolkit Reference Manual

Chapter 2 Development Models

ou
can

n the
del,
o
ork

ust
 a

ing
of
n,
The advantage of the spiral model over the waterfall model is that y
can evaluate which risks to address with each cycle. Because you
evaluate risks with prototypes much earlier than in the waterfall
process, you can address major obstacles and select alternatives i
earlier stages, which is less expensive. With a standard waterfall mo
you might have allowed assumptions about the risky components t
spread throughout your design, requiring much more expensive rew
when the problems are later discovered.

Summary

Lifecycle models are described as distinct choices from which you m
select. In practice, however, you can apply more than one model to
single project. You might start a project with a spiral model to help
refine the requirements and specification over several iterations us
prototyping. Once you have reduced the risk of a poorly stated set
requirements, you might apply a waterfall lifecycle model to the desig
coding, testing, and maintenance stages.

There are other lifecycle models not presented here. If you are
interested in exploring other development methodologies, refer to
Appendix A, References.
Professional G Developers Toolkit Reference Manual 2-12 © National Instruments Corporation

© National Instruments Corporation 3-1 Professional G Developers Too
Chapter

3
Incorporating Quality into
the Development Process

ase.
m

.

d

at
that
are

ur
nt,

e
 and

, if
ittle

rds
This chapter describes strategies for producing quality software.

Many developers who follow the code and fix style of programming
described in Chapter 2, Development Models, mistakenly believe that
the issue of quality does not need to be addressed until the testing ph
This is simply not true. Quality must be designed into a product fro
the start. Developing quality software begins by selecting a
development model that helps you avoid problems in the first place
Quality should be considered during all stages of development—
requirements and specification, design, coding, testing, release, an
maintenance.

Quality controls should not be regarded as tedious requirements th
impede development. Most of them help streamline development so
problems are found when it is inexpensive to fix them—before they
in the software.

Quality Requirements

During the requirements stage, first set the quality standards for yo
product. The desired quality level should be treated as a requireme
just like other requirements. Weigh the merits and costs of various
options you have for applying quality measures to your project. Som
of the trade-offs you should consider are speed versus robustness,
ease-of-use versus power and complexity.

For short projects that only will be used in-house as tools or quick
prototypes, you do not need to emphasize robustness. For example
you decide to develop a VI to benchmark I/O and graphing speeds, l
error checking is necessary.

For more complicated projects that must be reliable, such as
applications for monitoring and controlling a factory process, the
software should handle invalid input gracefully. For example, if an
operator mistakenly selects invalid voltage or current settings, your
application should handle it appropriately. Institute as many safegua
lkit Reference Manual

Chapter 3 Incorporating Quality into the Development Process

del
r

d
,

el
re
ss.
ific,

o be

nt
 a
fect
tion
fully,
de

r
 to

es as
ey
e

e
into
id

as possible to prevent problems. Select a lifecycle development mo
that helps you find problems as early as possible, and allow time fo
formal reviews and thorough testing.

Configuration Management

Configuration management is the process of controlling changes an
ensuring that they are reviewed before they are made. In Chapter 2
Development Models, development models such as the waterfall mod
are discussed. A central focus of these models is to convert softwa
development from a chaotic unplanned activity to a controlled proce
These models improve software development by establishing spec
measurable goals at each stage of development.

Regardless of how well development proceeds, changes will need t
implemented. Customers might introduce new requirements in the
design stage. Performance problems discovered during developme
might prompt reevaluation of the design. You might need to rewrite
section of code to correct a problem found in testing. Changes can af
any components of the project from the requirements and specifica
to the design, code, and tests. If these changes are not made care
you might introduce problems that can delay development or degra
quality.

Source Code Control
After setting the project quality requirements, develop a process to
handle changes. This is very important for projects with multiple
developers. As the developers work on VIs, they need a method fo
collecting and sharing their work. A simple method to handle this is
establish a central source repository. If each of the developers’
computers is networked, you can create a shared location that serv
a central source for development. When they need to modify files, th
can retrieve them from this location. When they are finished with th
changes and the system is working, they can return the files to this
location.

Common files and areas of overlap introduce the potential for
accidental loss of work. If two developers decide to work on the sam
VI at the same time, only one developer really can merge changes
the project. The other developer’s efforts will be lost. You might avo
this with good communication, if each developer notifies the others
Professional G Developers Toolkit Reference Manual 3-2 © National Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

, a

d
trol

 files
ut a

can
 in

r can

ou
,
o
em.
hare
 older

for

r
k it
t
 and
t
when he or she needs to work on a specific VI. Inevitably, however
mistake will be made, and work will be lost.

Source Code Control tools address the problems of sharing VIs an
controlling access to avoid accidental loss of data. Source Code Con
tools make it easy to set up shared projects and to retrieve the latest
from the server. Once you have created a project, you can check o
file for development. Checking out a file marks it with your name so
that no other developer can modify the file. Other developers can,
however, retrieve the current version from the server. A developer
check out the file, make modifications, test the changes, and check
the file to the source code system. After the file is checked in, it is
accessible to the whole development team. Then another develope
check out the file to make further modifications.

The G Source Code Control tools are accessible from the Project menu.
They are described in detail in Chapter 11, Source Code Control Tools.

Managing All Project-Related Files
The G Source Code Control tools can manage more than just VIs. Y
can use them to manage all aspects of your project. Requirements
specifications, illustrations, reviews, and other documents related t
your project all can be managed within the Source Code Control syst
This ensures that you can control access to these documents and s
them as needed. You can use the tools to track changes and access
versions of files.

As described in Chapter 4, Prototyping and Design Techniques, source
management of all project-related files is extremely important for
developing quality software. Source management is a requirement
certification under one of the existing quality standards such as
ISO 9000.

Retrieving Old Versions of Files
There are times when you need to retrieve an old version of a file o
project. This might happen if you make a change to a file and chec
in, only to realize that you made a mistake. Another reason it migh
happen is if you send a beta version of your software to a customer
continue development. If the customer reports a problem, you migh
need to access a copy of the beta version.
© National Instruments Corporation 3-3 Professional G Developers Toolkit Reference Manual

Chapter 3 Incorporating Quality into the Development Process

er,
ave

n

es
r
 a
bel

ou
t by

e to
ed
n is

his

er
 are
e,
er,
 or
One way to achieve this is to back up your files periodically. Howev
unless you back up your system after every change, you might not h
access to every version.

The G Source Code Control tools provide a way to check in new
versions of a file and make a back-up copy of the old version.
Depending on how you configure the system, the tools can maintai
multiple backup copies of a file.

You can use the tools to label versions of files with descriptive nam
like beta, v1.0, and so on. You can label any number of files and late
retrieve all versions of a file with a specific label. When you release
version of your software, take a snapshot of the files by attaching a la
to them. Chapter 11, Source Code Control Tools, describes the file and
system history options.

Tracking Changes
If you are managing a software project, it is important to monitor
changes and track progress toward specific milestone objectives. Y
also can use this information to determine problem areas of a projec
identifying which components required a lot of changes.

The G Source Code Control tools maintain a log of all changes mad
files and projects. When checking in a file, the developer is prompt
to enter a summary of the changes made. This summary informatio
added to that file’s log.

You can view the history information for a file or for the system and
generate reports containing that information. See the SCC File History,
System History, and Creating Reports sections of Chapter 11, Source
Code Control Tools, for more information.

Change Control
Large projects might require a formal process for evaluation and
approval of each change request. A formal evaluation system like t
might be too restrictive, so be selective when choosing the control
mechanisms that you introduce into your system.

Changes to specific components, such as documents related to us
requirements, must be handled cautiously, because they generally
worked out through several iterations with the customer. In this cas
customer is used in a general sense; you might be your own custom
other departments in your company might be your target audience,
Professional G Developers Toolkit Reference Manual 3-4 © National Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

en
s as
 are
ely

ions

ve
iles

r

only

ent
 of
cess
.

vel
ns,

ers

ill
ve

ly
nd
 and
ou
ld
you might develop the software under contract for a third party. Wh
you are your own customer, it is much easier to adjust requirement
you move through the specification and even the design stage. If you
developing for someone else, changing requirements can be extrem
difficult.

Source Code Control tools give you a degree of control. You have
traceability for all changes, and you can configure the system to
maintain previous versions so that you can back out of changes if
necessary. Some Source Code Control systems give you more opt
for controlling software change. For example, with Microsoft Visual
SourceSafe, you can control access to files, so that some users ha
access to specific files while others do not. Or, you can specify that f
can be retrieved by anyone, but only certain users can make
modifications.

With this kind of control access, you might limit change privileges fo
requirement documents to specific team members. Or, you might
control access so that a user has modify access privileges to a file
when the change request is approved.

The amount of control you apply can vary throughout the developm
process. In the early stages of the project, before formal evaluation
the requirements, you do not necessarily need to restrict change ac
to files, nor do you need to follow formal change request processes
Once the requirements are approved, however, you can institute
stronger controls. You can apply the same concept of varying the le
of control before and after a project phase is complete to specificatio
test plans, and code as well.

Testing Guidelines

You should decide up front what level of testing is expected. Engine
under deadline pressure frequently give short attention to testing,
devoting more time to other development. Most software engineers w
tell you, however, that a certain level of testing is guaranteed to sa
you time in the end.

The degree to which you expect developers to test should be clear
understood. Also, testing methodologies should be standardized, a
results of tests should be tracked. As you develop the requirements
design specifications, you also should develop a test plan to help y
verify that the system and all of its components work. Testing shou
© National Instruments Corporation 3-5 Professional G Developers Toolkit Reference Manual

Chapter 3 Incorporating Quality into the Development Process

ore

 of

be

n be
face

a to
u

s

d
ng
g on

ths.

reflect the quality goals you want to achieve. For example, if
performance is more critical than robustness, you should develop m
tests for performance, and fewer that attempt incorrect input,
low-memory situations and the like.

Testing should not be an afterthought. It should be considered part
the initial design phases and should be implemented throughout
development to find and fix problems as soon as possible.

There are a variety of testing methodologies you can use to help
increase the quality of your VI projects. The following sections descri
some testing methodologies.

Black Box and White Box Testing
Black box testing is based on the expected functionality of software,
without knowledge of how it works. It is called black box testing
because you cannot see the internal workings. Black box testing ca
done based largely on a knowledge of the requirements and the inter
of a module. For a subVI, you could perform black box tests on the
interface of a subVI to evaluate results for various input values. If
robustness is a quality goal, you should include erroneous input dat
see if the subVI handles it well. For example, for numeric inputs, yo
should see how the subVI handles Infinity (Inf, -Inf), Not a Number
(NaN), and other out-of-range values. See the Unit Testing section for
more examples.

White box testing is designed with knowledge of the internal working
of the software. Use white box testing to check that all of the major
paths of execution are exercised. By examining a block diagram an
looking at the conditions of case structures and the values controlli
loops, you can design tests that check those paths. White box testin
a large scale is impractical because it is difficult to test all possible
paths.

While white box testing is difficult to fully implement for large
programs, you can choose to test the most important or complex pa
White box testing can be combined with black box testing for more
thorough testing of software.
Professional G Developers Toolkit Reference Manual 3-6 © National Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

t of
e
r

s.

and
d

re

e

 a
s
(test
lly

or

 the

test
Unit, Integration, and System Testing
Black box and white box testing can be used to test any componen
software, regardless of whether it is an individual VI or the complet
application. Unit, integration, and system testing are phases of you
project at which you can apply black box and white box tests.

Unit Testing
Unit testing concentrates on testing individual software component
For example, you might test an individual VI to see that it works
correctly, handles out-of-range data, has acceptable performance,
that all major execution paths in its block diagram are executed an
performed correctly. Individual developers can perform unit tests as
they work on their modules.

Some examples of common problems unit tests might account for a
listed below:

• Boundary conditions for each input, such as empty arrays and
empty strings, or 0 for a size input. Be sure that floating point
parameters handle Infinity and Not a Number.

• Invalid values for each input, such as –3 for a size input.

• Strange combinations of inputs.

• Missing files and bad path names.

• What happens when the user clicks the CANCEL button in a fil
dialog box?

• What happens if the user aborts the VI?

Define various sets of inputs that thoroughly test your VI, then write
test VI that calls your VI with each combination of inputs and check
the results. Or, use interactive data logging to create your input sets
vectors), and replay them interactively to re-test the VI or automatica
from a test VI that uses programmatic data retrieval.

To perform unit testing, you might need to stub out some components
that have not been implemented yet or that are being developed. F
example, if you are developing a VI that communicates with an
instrument and writes information to a file, another developer can
work on a file I/O driver that writes out the information in a specific
format. To test your components early, you might choose to stub out
file I/O driver by creating a VI with the same interface. This VI can
write the data out in a format that is easy for you to check. You can
© National Instruments Corporation 3-7 Professional G Developers Toolkit Reference Manual

Chapter 3 Incorporating Quality into the Development Process

se

d

ng
ur
ken
y

it
ted
ht
ared

t the
 VIs
it

re

st in

ts,

ts.
the driver with the real file I/O driver later during the integration pha
as described in the next section.

Regardless of how you test your VIs, record exactly how, when, an
what you tested and keep any test VIs you created. This test
documentation is especially important if you are creating VIs for payi
customers; but it is also useful just for yourself. When you revise yo
VIs, you should run the existing tests to make sure you have not bro
anything. You also should update the tests for any new functionalit
you have added.

Integration Testing
Integration testing is performed on a combination of units. While un
testing finds most bugs, integration testing might reveal unanticipa
problems. Modules might not work together as expected. They mig
interact in unexpected ways because of the way they manipulate sh
data. For more information, see Chapter 26, Performance Issues, in the
G Programming Reference Manual, or Chapter 27, Performance Issues,
in the LabVIEW User Manual.

Integration testing also can be done in earlier stages before you pu
whole system together. For example, if a developer creates a set of
that communicates with an instrument, he or she could develop un
tests that verify that each subVI correctly sends the appropriate
commands. He or she also could develop integration tests that use
several of the subVIs in conjunction with each other, to verify that the
is not any unexpected interaction.

Integration testing should not be performed as a comprehensive te
which you combine all the components and try to test the top-level
program. Doing this can be very expensive because it is difficult to
determine the specific source of problems within a large set of VIs.
Instead, you should consider testing incrementally, either with a
top-down or bottom-up testing approach.

With a top-down approach, you gradually integrate major componen
testing the system with the lower-level components of the system
disabled—or stubbed out—as described in the Unit Testing section.
Once you have verified that the existing components work together
within the existing framework, you can enable additional componen
Professional G Developers Toolkit Reference Manual 3-8 © National Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

a
 as

 test

eir
ally

en
all

 of
ents

o test
of a

ware
st as
met.

s.
nto
ask

it

d

ms
d by
With a bottom-up approach, you test low-level modules first and
gradually work up toward the high-level modules. Begin by testing
small number of components combined into a simple system, such
the driver test described above. After you have combined a set of
modules and verified that they work together, add components and
them with the already-debugged subsystem.

The bottom-up approach consists of tests that gradually increase th
scope, while the top-down approach consists of tests that are gradu
refined as new components are added.

Regardless of the approach you take, you must perform regression
testing at each step to verify that the features that already have be
tested still work. Regression testing consists of repeating some or
previous tests. Because you might need to perform the same tests
numerous times, you might want to develop representative subsets
tests that can be used for frequent regression tests. These compon
can be run at each stage, while the more detailed tests can be run t
an individual set of modules if problems are encountered or as part
more detailed regression test that is applied periodically during
development.

System Testing
System testing happens after integration to determine whether the
product meets customer expectations and to make sure that the soft
works as expected within the hardware system. This can be done fir
a set of black box tests that verify that the requirements have been
Most LabVIEW and BridgeVIEW applications perform some kind of
I/O. The application also might communicate with other application
With system testing, you test the software to make sure that it fits i
the overall system as expected. When testing the system, you will
and answer questions such as the following:

• Are performance requirements met?

• If my application communicates with another application, does
handle an unexpected failure of that application well?

You can complete this testing with alpha and beta testing. Alpha an
beta testing serve to catch test cases that might not have been
considered or completed by the developers. With alpha testing, a
functionally complete product is tested in-house to see if any proble
are found. When alpha testing is complete, the product is beta teste
customers in the field.
© National Instruments Corporation 3-9 Professional G Developers Toolkit Reference Manual

Chapter 3 Incorporating Quality into the Development Process

ally
r

 the
s

s

ine

ither
you

ion.

ible
 and
ting
t is

 be a
er

One
nce
.

Alpha and beta testing are the only testing mechanisms for some
companies. This is unfortunate because alpha and beta testing actu
can be inexact. Alpha and beta testing are not a substitute for othe
forms of testing that rigorously test each component to verify that it
meets stated objectives. Because this type of testing is done late in
development process, it is difficult and costly to incorporate change
suggested as a result.

Formal Methods of Verification
Some software engineers are proponents of formal verification of
software. While other testing methodologies attempt to find problem
by exploration, formal methods attempt to prove the correctness of
software mathematically. If you have ever worked through proofs in
math classes, you have an idea of what is involved.

The principal idea is to analyze each function of a program to determ
if it does what you expect. You mathematically state the list of
preconditions before the function and the postconditions that are
present as a result of the function. This process can be performed e
by starting at the beginning of the program and adding conditions as
work through each function or by starting at the end and working
backward, developing a set of weakest preconditions for each funct
This process is described briefly in some of the documents listed in
Appendix A, References.

This type of testing becomes more complex as more and more poss
paths of execution are added to a program through the use of loops
conditions. Many people believe that formal testing presents interes
ideas for looking at software that can help in small cases, but that i
impractical for most programs.

Style Guidelines

Inconsistent approaches to development and to user interfaces can
problem when multiple developers work on a project. Each develop
has his or her own style of development, color preferences, display
techniques, documentation practices, and diagram methodologies.
developer might make extensive use of global variables and seque
structures while another might prefer to make more use of data flow
Professional G Developers Toolkit Reference Manual 3-10 © National Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

m,

s

 find

 to

sh

ping
ing

es

sign
ing

s
ith

e in
 the

sults
Inconsistent style techniques can create software that, at a minimu
looks bad. If the user interface VIs have different behaviors— some
expect a user to click a button when he or she is finished and other
expect a keyboard function key—users might become confused and
the VIs difficult to use.

Inconsistent style also makes software difficult to maintain. For
example, if one developer does not like to use subVIs and decides
develop all features within a single large VI, it will be difficult to
modify.

Establish a set of guidelines for your VI development team. Establi
an initial set of guidelines and add additional rules as the project
progresses. These style guidelines can be used in future projects.

Chapter 7, Using Consistent Style—The G Style Guide, provides some
style recommendations. Use these guidelines as a basis for develo
your own style guide. Programming style in any language is someth
for which there really cannot be a single standard. What one group
prefers, another group might disagree with. Select a set of guidelin
that works for you and your development team.

Design Reviews

Design reviews are a great way to identify and fix problems during
development. When the design of a feature is complete, set up a de
review with at least one other developer. Discuss quality goals, ask
questions such as the following.

• Does the design incorporate testing?

• Is error handling built-in?

• Are there any assumptions in the system that might be invalid?

Also, look at the design with an eye for features that are essential a
opposed to features that are extras. While there is nothing wrong w
building in extra features, if quality and schedule are important, you
should ensure that these extra features are either scheduled for lat
the development process, so that they can be dropped, or moved to
list of features for subsequent releases. Be sure to document the re
of the design review and any changes that are recommended.
© National Instruments Corporation 3-11 Professional G Developers Toolkit Reference Manual

Chapter 3 Incorporating Quality into the Development Process

e
 of

rm
e.
 the

ng a
nd

?

nd

,

e

em

r to

Code Walkthroughs

A code walkthrough is similar to a design review, except it analyzes th
code instead of the design. To perform a code review, give printouts
the VIs to review to one or more developers. You might want to perfo
the review online because VIs are easier to read and navigate onlin
The designer should talk through the design. The reviewers compare
description to the actual implementation. The reviewers should
consider many of the same issues included in a design review. Duri
code walkthrough, many of the following questions might be asked a
answered.

• What happens if an error is returned by a specific VI or function
Are errors handled and/or reported correctly?

• Are there any race conditions? An example of a race condition is a
block diagram that reads from and writes to a global variable, a
there is the potential that a parallel block diagram could
simultaneously attempt to manipulate the same global variable
resulting in loss of data.

• Is the block diagram well-implemented? Are the algorithms
efficient in terms of speed and/or memory usage? For more
information, refer to Chapter 26, Performance Issues, in the G
Programming Reference Manual, or Chapter 27, Performance Issues,
in the LabVIEW User Manual.

• Is the block diagram easy to maintain? Has the developer mad
good use of hierarchy, or is he or she placing too much
functionality in a single VI? Are the group’s style guidelines
adhered to?

There are a number of other features you can look for in a code
walkthrough. Take notes on the problems you encounter and add th
to a list you can use as a guideline for other walkthroughs.

Stick to technical issues when doing a code walkthrough. Remembe
review only the code, not the developer who produced it. Try not to
focus on the negative; be sure to raise positive points.

For documentation that contains additional ideas on walkthrough
techniques, see Appendix A, References.
Professional G Developers Toolkit Reference Manual 3-12 © National Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

be
ect.

rk?
ry?

 if
 get

ems

erns

cific
 for
u

e.

e
Postmortem Evaluation

At the end of each stage in the development process, you should
consider having a postmortem meeting to discuss what has gone well
and what has not. Each developer should evaluate the project and
frank in discussing obstacles that reduce the quality level of the proj
Each developer should consider the following questions.

• What are we doing right? What is working well?

• What are we doing wrong? What can be improved?

• Are there specific areas of the design/code that need a lot of wo
Is a design review or code walkthrough of that section necessa

• Are the quality systems working? Could we catch more problems
we changed the quality requirements? Are there better ways to
the same results?

Postmortem meetings at major milestones can help to correct probl
mid-schedule instead of waiting until the release is complete.

Software Quality Standards

As software has become a more critical component in systems, conc
about software quality have increased. Consequently, a number of
organizations have developed quality standards that either are spe
to software or can be applied to software. When developing software
some large organizations, especially government organizations, yo
might be required to follow one of these standards.

The following sections include a brief overview of the most popular
standards. Appendix A, References, lists several documents that contain
more information on these standards.

International Organization for Standards (ISO) 9000
The International Organization for Standards has developed the
ISO 9000 family of standards for quality management and assuranc
Many countries have adopted these standards. In some cases,
governmental bodies require compliance with this ISO standard.
Compliance generally is measured by certification performed by a
third-party auditor. The ISO 9000 family is widely used within Europ
and Asia. It has not been widely adopted within the United States,
© National Instruments Corporation 3-13 Professional G Developers Toolkit Reference Manual

Chapter 3 Incorporating Quality into the Development Process

rting

en

ittee

m
n

can
 is

d, it
 to
ntee

ce

 in
l

tent

ith
eel
they

can
although many companies and some government agencies are sta
to adopt it.

In each country, the ISO family of standards might be referred to by
slightly different names. For example, in the United States it has be
adopted as the ANSI/American Society for Quality Control (ASQC)
Q90 Series. In Europe, it has been adopted by the European Comm
for Standardization (CEN) and the European Committee for
Electrotechnical Standardization (CENELEC) as the European Nor
(EN) 29000 Series. In Canada, it has been adopted by the Canadia
Standards Association (CSA) as the Q 9000 series. But it is most
commonly referred to as ISO 9000.

ISO 9000 is an introduction to the ISO 9000 family of standards.
ISO 9001 is a model for quality assurance in design, development,
production, installation, and servicing. Its focus on design and
development makes it the most appropriate for software products.

Because the ISO 9000 family is designed to apply to any industry, it
be somewhat difficult to apply to software development. ISO 9000.3
a set of guidelines designed to explain how to apply ISO 9001 to
software development.

ISO 9001 does not dictate software development procedures. Instea
requires documentation of development procedures and adherence
the standards you set. Conformance with ISO 9001 does not guara
quality. Instead, the idea behind ISO 9001 is that companies that
emphasize quality and follow their documented practices will produ
higher quality products than companies that do not.

U.S. Food & Drug Administration (FDA) Standards
The FDA is in the process of finalizing new rules for software used
medical applications. The FDA requires all software used in medica
applications to meet its Current Good Manufacturing Practices
(CGMP). One of the goals of the new standard is to make it as consis
as possible with ISO 9001 and a supplement to ISO 9001,
ISO/CD 13485. While these FDA standards are largely consistent w
ISO 9001, there are some differences. Specifically, the FDA did not f
that ISO 9001 was specific enough about certain requirements, so
have spelled them out in the new rules.

Details of the new CGMP rules and how they compare to ISO 9001
be found at the FDA internet home page at http://www.fda.gov .
Professional G Developers Toolkit Reference Manual 3-14 © National Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

are
ity.
ty

ail),

lity

re

t
,
nd

t

ts
ls.

n

Capability Maturity Model (CMM)
In 1984, the United States Department of Defense created the Softw
Engineering Institute (SEI) to establish standards for software qual
The SEI developed a model for software quality called the Capabili
Maturity Model (CMM). The CMM focuses on improving the maturity
of an organization’s processes.

Whereas ISO establishes only two levels of conformance (pass or f
the CMM ranks an organization into one of five categories:

Level 1. Initial—The organization has few defined processes; qua
and schedules are unpredictable.

Level 2. Repeatable—Groups establish policies based on softwa
engineering techniques and previous projects that allow
repeated success. Groups use configuration managemen
tools to manage projects. Also, they track software costs
features, and schedules. Project standards are defined a
followed. While the groups can handle similar projects
based on this experience, their processes might not be
mature enough to handle significantly different types of
projects.

Level 3. Defined—The organization establishes a baseline set of
policies for all projects. Groups are well-trained and know
how to customize this set of policies for specific projects.
Each project has well-defined characteristics that make i
possible to accurately measure progress.

Level 4. Managed—The organization sets quality goals for projec
and processes and measures progress toward those goa

Level 5. Optimizing—The organization emphasizes continuous
process improvement across all projects. The organizatio
evaluates the software engineering techniques it uses in
different groups and applies them throughout the
organization.
© National Instruments Corporation 3-15 Professional G Developers Toolkit Reference Manual

Chapter 3 Incorporating Quality into the Development Process

new

lity
other
Figure 3-1 illustrates the five levels of the CMM and the processes
necessary for advancement to the next level.

Figure 3-1. Capability Maturity Model

Most companies are at level one or two. The U.S. Department of
Defense prefers a level three or higher CMM assessment in bids on
government software development. The CMM also is used in some
commercial companies, mainly in the United States.

The CMM differs from ISO 9001 in that it is software-specific. Also,
the ISO specifications are fairly high-level (ISO 9001 is only a few
pages) while CMM is very detailed (more than 500 pages).

Institute of Electrical and Electronic Engineers (IEEE) Standards
IEEE has defined a number of standards for software engineering.
IEEE Std 730, first published in 1980, is a standard for software qua
assurance plans. This standard serves as a foundation for several
IEEE standards, and gives a brief description of the minimum
requirements for a quality plan in the following areas:

• Purpose

• Reference documents

• Management

• Documentation

• Standards, practices, conventions, and metrics

• Reviews and audits

Level 1
Initial

Level 2
Repeatable

Level 3
Defined

Level 4
Managed

Level 5
Optimizing

Stable Process
for Projects

Defined Process
for Organization

Measure Success
of Processes

Tune Processes Based
on Measurements
Professional G Developers Toolkit Reference Manual 3-16 © National Instruments Corporation

Chapter 3 Incorporating Quality into the Development Process

tion

n

part
el

rds.
ns,
• Test

• Problem reporting and corrective action

• Tools, techniques, and methodologies

• Code control

• Media control

• Supplier control

• Records collection, maintenance, and retention

• Training

• Risk Management

As with the ISO standards, IEEE Std 730 is fairly short. It does not
dictate how you meet the requirements but does require documenta
for these practices to a specified minimum level of detail.

In addition to IEEE Std 730 there are several other IEEE standards
related to software engineering, including:

• Std 610—Defines standard software engineering terminology

• Std 829—Establishes standards for software test documentatio

• Std 830—Explains the content of good software requirements
specifications

• Std 1074—Describes the activities that should be performed as
of a software lifecycle without requiring a specific lifecycle mod

• Std 1298—Details the components of a software quality
management system; similar to ISO 9001

Your projects might be required to meet some or all of these standa
Even if you are not required to develop to one of these specificatio
they can be helpful in developing your own requirements,
specifications, and quality plans.
© National Instruments Corporation 3-17 Professional G Developers Toolkit Reference Manual

© National Instruments Corporation 4-1 Professional G Developers Too
Chapter

4
Prototyping and Design
Techniques
an
e

k

de

ine

es of
 do

h as

bout

ould
ng
 you
as
met,
ype
This chapter gives you pointers for project design, including
programming approaches, prototyping, and benchmarking.

When you first begin a programming project, deciding how to start c
be intimidating. A lot of G programmers start immediately with a cod
and fix development process, building up some of the VIs they thin
they will need. Then they realize that they actually need something
different from what they have built already. Consequently, a lot of co
is developed, reworked, or thrown away unnecessarily.

Clearly Define the Requirements of Your Application

Before developing a detailed design of your system, you should def
your goals as clearly as possible. Begin by making a list of
requirements. Some requirements are very specific, such as the typ
I/O, sampling rates, or the need for real-time analysis. You need to
some research at this early stage to be sure you can meet the
specifications. Other requirements depend on user preference, suc
file formats or graph styles.

Try to distinguish between absolute requirements and desires. You
might be able to satisfy all requests, but it is best to have an idea a
what you can sacrifice if you run out of time.

Also, be careful that the requirements are not so detailed that they
constrain the design. For example, in designing an I/O system the
customer probably has certain sampling rate and precision
requirements. He or she also is constrained by cost. Those issues sh
be included in your requirements. However, if you can avoid specifyi
the operating system and hardware, you can adjust your design after
begin prototyping and benchmarking various components. As long
the costs are within budget, and the timing and precision issues are
the customer might not care whether the system uses a particular t
of plug-in card or other hardware.
lkit Reference Manual

Chapter 4 Prototyping and Design Techniques

ic

nt or
 to

orter

 to
 to

r for
ble

ical
in

ing

am

on
nd

of

 of

sure
ata

he
W
Another example of overly constraining a design is to be too specif
about the format for display used in various screens with which the
customer interacts. A picture of a display might be useful to explain
requirements, but be clear about whether the picture is a requireme
a guideline. Some designers go through significant contortions trying
produce a system that behaves in a specific way because a certain
behavior was a requirement. In this case, there might be a simpler
solution that produces the same results at a much lower cost in a sh
time.

Top-Down Design

The block diagram programming metaphor used in G was designed
be easy to understand. Most engineers already use block diagrams
describe systems. The goal of the block diagram is to make it easie
you to move from the system block diagrams you create to executa
code.

The basic concept is to divide the task into manageable pieces at log
places. Begin with a high-level block diagram that describes the ma
components of your system. For example, you might have a block
diagram that consists of a block for configuration, a block for
acquisition, a block for analysis of the acquired data, a block for sav
the data to disk, and a block to clean up at the end of the system.

After you have determined the high-level blocks, create a block diagr
that uses those blocks. For each block, create a new stub VI (a
non-functional prototype representing a future subVI). Create an ic
for this stub VI and create a front panel with the necessary inputs a
outputs. You do not have to create a block diagram for this VI yet.
Instead, define the interface and see if this stub VI is a useful part
your top-level block diagram.

After you assemble a group of these stub VIs, determine the function
each block and how it works. Ask yourself whether any given block
generates information that some subsequent VI needs. If so, make
that your top-level block diagram sketch contains wires to pass the d
between the VIs. You can document the functionality of the VI and t
inputs and outputs using the Info VI and Description tools in LabVIE
and BridgeVIEW.
Professional G Developers Toolkit Reference Manual 4-2 © National Instruments Corporation

Chapter 4 Prototyping and Design Techniques

oid
Is

ent
ck
,

ch

is
so
ents
you

ou
ock
ral
use
In analyzing the transfer of data from one block to another, try to av
global variables, because they hide the data dependency between V
and might introduce race conditions. See Chapter 26, Performance
Issues, of the G Programming Reference Manual, or Chapter 27,
Performance Issues, of the LabVIEW User Manual, for more information.
As your system becomes larger, it becomes difficult to debug if you
use global variables as your method of transferring information
between VIs.

Continue to refine your design by breaking down each of the compon
blocks into more detailed outlines. You can do this by going to the blo
diagram of what was once a stub VI and filling out its block diagram
placing lower-level stub VIs on the block diagram that represent ea
of the major actions the VI must perform.

Be careful not to jump too quickly into implementing the system at th
point. One of the objectives here is to gradually refine your design
you can determine whether you have left out any necessary compon
at higher levels. For example, when refining the acquisition phase,
might realize that there is more information you need from the
configuration phase. If you completely implement one block before y
analyze a subsequent block, you might need to redesign the first bl
significantly. It is better to try to refine the system gradually on seve
fronts, with particular attention to sections that have more risk beca
of their complexity.

The following example illustrates how you might apply top-down
design techniques to a data acquisition system.
© National Instruments Corporation 4-3 Professional G Developers Toolkit Reference Manual

Chapter 4 Prototyping and Design Techniques

e

l
r
ata

s
s
er
ter
 that

ted
e
s
Example�A Data Acquisition System
This example describes how you might design a general data
acquisition system. This system must let the user provide some
configuration of the acquisition (rates, channels, and so on), acquir
data, process the data, and save it to disk.

Start to design the VI hierarchy by breaking the problem into logica
pieces. As shown in the following flowchart, there are several majo
blocks that you can expect to see in one form or another on every d
acquisition system.

Think about the data structures that you will need, asking question
such as “What information needs to accompany the raw data value
from the Read Data VI to the Save Data VI?” This might imply a clust
array—an array of many channels, each element of which is a clus
containing the value, the channel name, scale factors, etc. A method
performs some action on such a data structure is called an algorithm.
Algorithms and data structures are closely intertwined. This is reflec
in modern structured programming, and it works well in G. If you lik
to use pseudo-code, try that technique as well. The following figure
show a relationship between pseudo-code and G structures.

MAIN

CONFIG
HDW

SETUP
FILE

SETUP
READ
DATA

PROCESS
DATA

SAVE
DATA

FILE I/O
HANDLER

HDW
DRIVERS
Professional G Developers Toolkit Reference Manual 4-4 © National Instruments Corporation

Chapter 4 Prototyping and Design Techniques

ture.

ire

,
Figure 4-1. Mapping Pseudo-Code into a G Data Structure

Figure 4-2. Mapping Pseudo-Code into Actual G Code

Notice the correspondence between the program and the data struc

Many experienced LabVIEW and BridgeVIEW users prefer to use G
sketches. You can draw caricatures of the familiar structures and w
them together on paper. This is a good way to think things through

Pseudo-code

FOR each module defined
IF module is active
THEN

FOR each channel
IF channel is active
THEN

Read_Data (module, channel);
Store data in output array;

ENDIF
ENDFOR

ENDIF
ENDFOR

Configuration Data Structure

FOR each module defined
IF module is active
THEN

FOR each channel
IF channel is active
THEN

Read_Data (module, channel);
Store data in output array;

ENDIF
ENDFOR

ENDIF
ENDFOR
© National Instruments Corporation 4-5 Professional G Developers Toolkit Reference Manual

Chapter 4 Prototyping and Design Techniques

re

in
lly,
ode
he
ith

o
.

art

ete

lem

iate.
d
e
nd

t
ing
sometimes with the help of other G programmers. If you are not su
how a certain function will work, prototype it in a simple test VI.

Figure 4-3. Data Flow for a Generic Data Acquisition Program

Artificial data dependency between the initialization VIs and the ma
While structure eliminates the need for a Sequence structure. Fina
you are ready to write the program in G. Remember to make your c
modular, building subVIs when there is a logical division of labor or t
potential for code reuse. Solve the more general problems along w
your specific ones. Test your subVIs as you write them. This might
involve construction of higher-level test routines. It is much easier t
catch the bugs in one small module than in a large hierarchy of VIs

Bottom-Up Design

Usually, you should avoid bottom-up system design, although it is
sometimes useful when used in conjunction with top-down design.
Bottom-up design is the exact opposite of top-down design. You st
by building the lower-level components and then progress up the
hierarchy, gradually putting pieces together until you have the compl
system.

Because you do not start with a clear idea of the big picture, the prob
with bottom-up design is that you might build pieces that do not fit
together the way you expect.

There are specific cases in which using bottom-up design is appropr
If the design is constrained by low-level functionality, you might nee
to build that low-level functionality first to get an idea of how it can b
used. This might be true of an instrument driver, where the comma
set for the instrument constrains you in terms of when you can do
certain operations. For example, with a top-down design, you migh
break up your design so that configuration of the instrument and read

READ
DATA

PROCESS
DATA

SAVE
DATA

DISPLAYS
Professional G Developers Toolkit Reference Manual 4-6 © National Instruments Corporation

Chapter 4 Prototyping and Design Techniques

n
e,

ght
 the
gy

h to

t.

 an
ust
he

t
ires
here
ds

e

age,

s
 this
vel
e
he

ation
a measurement from the instrument are done in distinct VIs. The
instrument command set might turn out to be more constraining tha
you thought, requiring you to combine these operations. In this cas
with a bottom-up strategy, you might start by building VIs that deal
with the instrument command set.

In most cases, you should use a top-down design strategy. You mi
mix in some components of bottom-up design, if necessary. Thus, in
case of an instrument driver, you might use a risk-minimization strate
to understand the limitations of the instrument command set and
develop the lower-level components. Then use a top-down approac
develop the high-level blocks.

The following example shows in more detail how you can apply this
technique to the process of designing a driver for a GPIB instrumen

Example�An Instrument Driver
A complex GPIB-controlled instrument can have hundreds of
commands, many of which interact with each other. A bottom-up
approach might be the most effective in designing a driver for such
instrument. The key here is that the problem is detail-driven—you m
learn the command set and design a front panel that is simple for t
user, yet gives full control of the instrument functionality. Design a
preliminary VI hierarchy, preferably one based on similar instrumen
drivers. You must satisfy the user’s needs. Designing a driver requ
more than putting knobs on GPIB commands. The example chosen
is the Tektronix 370A Curve Tracer. It has about 100 GPIB comman
if you include the read and write versions of each one.

Once you begin programming, the hierarchy will fill out naturally, on
subVI at a time. Add lower-level support VIs as required, such as: a
communications handler, a routine to parse a complex header mess
or an error handler. For instance, the 370A required a complicated
parser for the waveform preamble that contains such information a
scale factors, offsets, sources and units. It was much cleaner to bury
operation in a subVI than to let it obscure the function of a higher le
VI. Also, a communications handler made it very simple to exchang
messages with the instrument. Such a handler formats and sends t
message, reads the response (if required), and checks for errors.

Once the basic functions are ready, assemble them into a demonstr
driver VI that makes the instrument do something useful. You will
© National Instruments Corporation 4-7 Professional G Developers Toolkit Reference Manual

Chapter 4 Prototyping and Design Techniques

jor
ls
quickly find any fundamental flaws in your earlier choices of data
structures, terminal assignments, and default values.

The LabVIEW Instrument I/O Reference Manual describes this
development process in detail.

Figure 4-4. VI Hierarchy for the Tektronix 370A

The top-level VI is an automated test example. It calls nine of the ma
functions included in the driver package. Each function, in turn, cal
subVIs to perform GPIB I/O, file I/O, or data conversion.
Professional G Developers Toolkit Reference Manual 4-8 © National Instruments Corporation

Chapter 4 Prototyping and Design Techniques

rete
nd
imal
tem

ese
to

 of
se

cess
vide
nt,

ata
ed
ers

his

e
for
als

int
Designing for Multiple Developers

One of the main challenges in the planning stage is to establish disc
project areas for each developer. As you design the specification a
architectural design, you should begin to see areas that have a min
amount of overlap. For example, a complicated data monitoring sys
might have one set of VIs that displays and manipulates data and
another set that acquires the information and transfers it to disk. Th
two modules are substantial, do not overlap, and can be assigned
different developers.

Inevitably, there will be some interaction between the modules. One
the principal objectives of the early design work is to design how tho
modules interact with each other. The data display system must ac
the data it needs to display. The acquisition component needs to pro
this information for the other module. At an early stage in developme
you might design the connector panes of VIs needed to transfer
information between the two modules. Likewise, if there are global d
structures that must be shared, these should be analyzed and defin
early in the architectural design stage before the individual develop
begin work on their components.

In the early stages, each developer can create stub VIs with the
connector pane interface that was defined for the shared module. T
stub VI can do nothing, or if it is a VI that returns information, you
could have it generate random data. This allows each member of th
development team to continue development without having to wait
the other modules to be finished. It also makes it easy for the individu
to perform unit testing of their modules as described in Chapter 3,
Incorporating Quality into the Development Process.

As components near completion, you can integrate the modules by
replacing the stub components with their real counterparts. At this po
you can perform integration testing (see the Integration Testing section
in Chapter 3, Incorporating Quality into the Development Process) to
verify the system works as a whole.
© National Instruments Corporation 4-9 Professional G Developers Toolkit Reference Manual

Chapter 4 Prototyping and Design Techniques

.
t to

ate
s,

ing

 by

nt
ify
e.

ing
ther
this

ts,
es
 you

 but
ne of
Front Panel Prototyping

As mentioned in the Chapter 2, Development Models, front panel
prototypes can provide insight into the organization of your program
Assuming your program is user interface–intensive, you can attemp
mock up an interface that represents what the user sees.

Avoid implementing block diagrams in the early stages of creating
prototypes so you do not fall into the code and fix trap. Instead, cre
just the front panels, and as you create buttons, list boxes, and ring
think about what should happen as the user makes selections, ask
questions such as the following.

• Should the button lead to another front panel?

• Should some controls on the front panel be hidden and replaced
others?

If new options are presented, follow those ideas by creating new fro
panels to illustrate the results. This kind of prototyping can help solid
the requirements for a project and give you a better idea of its scop

Prototyping cannot solve all development problems, however. You
have to be careful how you present the prototype to customers.
Prototypes can give an overly inflated sense that you are rapidly mak
progress on the project. You have to be clear to the customer, whe
it is an external customer or other members of your company, that
prototype is strictly for design purposes and that much of it will be
reworked in the development phase.

Another danger in prototyping is that you might overdo it. Consider
setting strict time goals for the amount of time you will prototype a
system to prevent yourself from falling into the code and fix trap.

Of course, front panel prototyping only deals with user interface
components. As described here, it does not deal with I/O constrain
data types, or algorithm issues in your design. The front panel issu
might help you to better define some of these areas, because it gives
an idea of some of the major data structures you need to maintain,
it does not address all of these issues. For those, you need to use o
the other methods described in this chapter.
Professional G Developers Toolkit Reference Manual 4-10 © National Instruments Corporation

Chapter 4 Prototyping and Design Techniques

use

ion
ype
te

ed,
one
. Or
ot

ysis.

n
he

 a

ause

oop
to

are
od
Performance Benchmarking

For I/O systems with a number of data points or high transfer rate
requirements, test the performance-related components early, beca
the test might prove your design assumptions are incorrect.

For example, if you plan to use an instrument as your data acquisit
system, you might want to build some simple tests that perform the t
of I/O you plan to use. While the specifications might seem to indica
that the instrument can handle the application you are creating, you
might find that triggering, for example, takes longer than you expect
or that switching between channels with different gains cannot be d
at the necessary rate without reducing the accuracy of the sampling
perhaps even though the instrument can handle the rates, you do n
have enough time on the software side to perform the desired anal

A simple prototype of the time-critical sections of your application ca
help to reveal this kind of problem. The timing template example in t
examples/general/timing directory illustrates how to time a
process. Because timings can fluctuate from one run to another for
variety of reasons (initial run might take longer because it allocates
buffers, system interrupts, screen updates and user interaction can c
it to take longer in some cases), you should put the operation in a l
and display the average execution time. You also can use a graph
display timing fluctuations.

Identify Common Operations

As you design your programs, you might find that certain operations
performed frequently. Depending on the situation, this might be a go
place to use subVIs or loops to repeat an action.
© National Instruments Corporation 4-11 Professional G Developers Toolkit Reference Manual

Chapter 4 Prototyping and Design Techniques

ree

tead

 of

l

all,

.

For example, consider the following figure, where three similar
operations run independently.

An alternative to this design is a loop that performs the operation th
times. You can build an array of the different arguments and use
auto-indexing to set the correct value for each iteration of the loop.

If the array elements are constant, you can use an array constant ins
of building the array on the block diagram.

Some users mistakenly avoid using subVIs because they are afraid
the overhead it might add to their execution time. It is true that you
probably do not want to create a subVI from a simple mathematica
operation such as the Add function, especially if it must be repeated
thousands of times. However, the overhead for a subVI is fairly sm
and usually is dwarfed by any I/O you perform or by any memory
management that might occur from complex manipulation of arrays
Professional G Developers Toolkit Reference Manual 4-12 © National Instruments Corporation

© National Instruments Corporation 5-1 Professional G Developers Too
Chapter

5
Scheduling and
Project Tracking
his
time
 you

e to
,

ly

ve
oor

ines
s

 in
ather

 at
e

ts
This chapter describes techniques for developing estimates of
development time and using those estimates to create schedules. T
chapter also distinguishes between an estimate, which reflects the
required to implement a feature, and a schedule, which reflects how
fulfill that feature. Estimates are commonly expressed in ideal
person-days (eight hours of work). In creating a schedule from
estimates, you must consider dependencies (one project might hav
be completed before another can begin) and other tasks (meetings
support for existing projects, and so on).

Estimation

One of the principle tasks of planning is to estimate the size of the
project and fit it into the schedule. Most projects are at least partial
schedule-driven. Schedule, resources, and critical requirements all
interact to determine what you can implement in a release.

Unfortunately, when it comes to estimating software schedules
accurately, very few people are successful. Major companies all ha
had software projects exceed original estimates by a year or more. P
planning or an incomplete idea of project goals often causes deadl
to be missed. Another major cause of missed schedules is known a
feature creep—your design gradually grows to include features that
were not part of the original requirements. In many cases, the slips
schedule are due to the use of a code and fix development process r
than a more measurable development model.

Off-the-cuff estimates are almost never accurate for the following
reasons.

• People are usually overly optimistic. An estimate of two months
first might seem like an infinite amount of time. Then, during th
last two weeks of the project, when developers find themselves
working many overtime hours, it becomes clear that it is not.

• The objectives, implementation issues, and quality requiremen
are not understood clearly. When challenged with the task of
lkit Reference Manual

Chapter 5 Scheduling and Project Tracking

two

ight
fied

the

orts,
ot
ting

ts
k.

ost

ire
can
ng

of
se

s of
or a

The
or
creating a data monitoring system, an engineer might estimate
weeks. If the product is designed by the engineer and for the
engineer, this estimate might be right. However, if it is for other
users, he or she probably is not considering requirements that m
be assumed by a less knowledgeable user but never are speci
clearly.

For example, VIs need to be reliable and easy-to-use because
engineer is not going to be there to correct them if a problem
occurs. A considerable amount of testing and documentation is
necessary. Also, the user needs to save results to disk, print rep
and view and manipulate the data on screen. If he or she has n
discussed or considered the project in detail, the engineer is set
himself or herself up for failure.

• Day-to-day tasks are ignored. There are meetings to attend,
holidays, reports to write, conferences to attend, existing projec
to maintain, and other tasks that make up a standard work wee

Accurate estimates are difficult because of the imprecise nature of m
software projects. In the initial phase of a project, complete
requirements are not known, and the way you will implement those
requirements is even less clear. As you clarify the objectives and
implementation plans, you can make more realistic estimates.

Some of the current best practice estimation techniques in software
engineering are described in the following sections. All of them requ
breaking the project down into more manageable components that
then be estimated individually. There are other methods of estimati
development time. See Appendix A, References, for a list of documents
that describe these and other estimation techniques in more detail.

Lines of Code/Number of Nodes Estimation
Software engineering documentation frequently refers to Lines of Code
(LOC) as a measurement, or metric, of software complexity. Lines
Code as a measurement of complexity is very popular in part becau
the information is easy to gather. Numerous programs exist for
analyzing textual languages to measure complexity. In general, Line
Code measurements include every line of source code developed f
project, excluding comments and blank lines.

The VI Metrics tool, described in Chapter 8, VI Metrics Tool, provides
a method for measuring a corresponding metric for G-based code.
VI Metrics tool lets you count the number of nodes used within a VI
Professional G Developers Toolkit Reference Manual 5-2 © National Instruments Corporation

Chapter 5 Scheduling and Project Tracking

,

t

dea

f

e
his
wn

the
nent
ime

ing.
her
f

ong

m
g

t.
 C

evel
vel
in a

A
n
within a hierarchy of VIs. A node is almost any object on a block
diagram excluding labels and graphics, but including functions, VIs
and structures such as loops and sequences. See the Chapter 8, VI
Metrics Tool, for details on how to use this tool and more information
on the accounting mechanism it uses.

You can use Number of Nodes as a method for estimating future projec
development efforts. For this to work, you must build up a base of
knowledge about current and previous projects. You must have an i
of the amount of time it took to develop components of existing
software products and associate that information with the number o
nodes used in that component.

Armed with that historical information, you next need to estimate th
number of nodes required for a new project. It is not possible to do t
for an entire project at once. Instead, you must break the project do
into subprojects that you can compare to other tasks completed in
past. Once you have broken it down, you can estimate each compo
and produce a total estimate of both the number of nodes and the t
required for development.

Problems with Lines of Code and Numbers of Nodes
Size-based metrics are not uniformly accepted in software engineer
Many people favor them because it is a relatively easy metric to gat
and because a lot of literature has been written about it. Detractors o
size metrics point out the following flaws:

• Size-based metrics are organization-dependent. Lines of
code/numbers of nodes can be useful within an organization as l
as you are dealing with the same group of people and they are
following the same style guidelines. Trying to use size metrics fro
other companies/groups can be very difficult because of differin
levels of experience, different expectations for testing and
development methodologies, and so on.

• Size-based metrics are also programming language–dependen
Comparing a line of code in assembly language to one written in
can be like comparing apples to oranges. Statements in higher-l
languages can provide more functionality than those in lower-le
languages. Comparing numbers of nodes in G to lines of code
textual language can be inexact for this reason.

• Not all lines of code are created with the same level of quality.
VI that retrieves information from a user and writes it to a file ca
© National Instruments Corporation 5-3 Professional G Developers Toolkit Reference Manual

Chapter 5 Scheduling and Project Tracking

or

that
d

ing
ve
vel

e
r in
ch
e

e
nto
ore

te

he
r

tes

y
ple,
s
be written so efficiently that it involves a small number of nodes
it can be written poorly with a large number of nodes.

• Not all lines of code are equal in complexity. An add function is
much easier to use than an array index node. A block diagram
consists of 50 nested loops is much more difficult to understan
than 50 icons connected together in a line.

• Size-based metrics rely on a solid base of information associat
productivity with various projects. To be accurate, you should ha
statistics for each member of a team because the experience le
of team members varies.

Despite these problems, size metrics are used widely for estimating
projects. A good technique to use is to estimate a project using siz
metrics in conjunction with one of the other methods described late
this chapter. The two different methods can serve as checks for ea
other. If you find differences between the two estimates, analyze th
assumptions in each to determine the source of the discrepancy.

Effort Estimation
Effort estimation is similar in many ways to number of nodes
estimation. You break the project down into components that can b
more easily estimated. A good rule of thumb is to break the project i
tasks that take no more than a week to complete. Tasks that are m
complicated are difficult to estimate accurately.

Once you have broken the project down into tasks, you can estima
the time to complete each task and add the results to calculate an
overall cost.

Wideband Delphi Estimation
You can use wideband delphi estimation in conjunction with any of t
other estimation techniques to achieve more reliable estimates. Fo
successful wideband delphi estimation, multiple developers must
contribute to the estimation process.

First divide the project into separate tasks. Then meet with other
developers to explain the list of tasks. Avoid discussing time estima
during this early discussion.

Once you have agreed on a set of tasks, each developer separatel
estimates the time it will take to complete each task, using, for exam
uninterrupted person-days as the unit of estimation. The developer
Professional G Developers Toolkit Reference Manual 5-4 © National Instruments Corporation

Chapter 5 Scheduling and Project Tracking

oup
. It is
his

y

e of

t be
 and

 the
. This

te
rge
t

ives

ct

nd

ese
A,

far.

nts
should list any assumptions made in forming their estimates. The gr
then reconvenes to graph the overall estimates as a range of values
a good idea to have a person outside the development team lead t
meeting and keep the estimates anonymous.

After graphing the original set of values, each developer reports an
assumptions made in determining the estimate. For example, one
developer might have assumed a certain VI project takes advantag
existing libraries. Another might point out that a specific VI is more
complicated than expected because it involves communicating with
another application or a shared library. Another team member migh
aware of a task that involves an extensive amount of documentation
testing.

After stating assumptions, each developer reevaluates and adjusts
estimates. The group then graphs and discusses the new estimates
process might go on for three or four rounds.

In most cases, you will converge to a small range of values. Absolu
convergence is not required. After the meeting, the developer in cha
of the project can use the average of the results, or he or she migh
ignore certain outlying values. If some tasks turn out to be too
expensive for the time allowed, he or she might consider adding
resources or scaling back the project.

Even if the estimate is incorrect, the discussion from the meetings g
a clear idea of the scope of a project. The discussion serves as an
exploration tool during the specification and design part of the proje
so you can avoid problems later.

For a list of documents that include more information on the wideba
delphi estimation method, see Appendix A, References.

Other Estimation Techniques
Several other techniques exist for estimating development cost. Th
are described in detail in some of the documents listed in Appendix
References. The following list briefly describes some other popular
techniques.

• Function Point Estimation—Function-point estimation differs
considerably from the size estimation techniques described so
Rather than divide the project into tasks that are estimated
separately, function points are based on a formula applied to a
category breakdown of the project requirements. The requireme
© National Instruments Corporation 5-5 Professional G Developers Toolkit Reference Manual

Chapter 5 Scheduling and Project Tracking

s,
h is

 be

e
eas
ion
ss

ly

s

ple
.
,
 a
d

t
 or
r
d

to

ts
you
are analyzed for features such as inputs, outputs, user inquirie
files, and external interfaces. These features are tallied, and eac
weighted. The results are added up to produce a number
representing the complexity of the project. Then this number can
compared to function-point estimates of previous projects to
determine an estimate.

Function-point estimates were designed primarily with databas
applications in mind but have been applied to other software ar
as well. Function-point estimation is popular as a rough estimat
method because it can be used early in the development proce
based on requirements documents. However, the accuracy of
function points as an estimation method has not been thorough
analyzed.

• COCOMO Estimation—COCOMO (COnstructive COst MOdel) i
a formula-based estimation method for converting software size
estimates to estimated development time. COCOMO is a set of
methods that range from basic to advanced. Basic COCOMO
makes a rough estimate based upon a size estimate and a sim
classification of the project type and experience level of a team
Advanced COCOMO takes into account reliability requirements
hardware features and constraints, programming experience in
variety of areas, and tools and methods used for developing an
managing the project.

Mapping Estimates to Schedules

An estimate of the amount of effort required for a project can differ
greatly from the calendar time needed to complete the project. You
might accurately estimate that a VI should take only two weeks to
develop. However, in implementation you must fit that developmen
into your schedule. You might have other projects to complete first,
you might need to wait for another developer to complete his or he
work before you can start the project. You might have meetings an
other events during that time.

Estimate project development time separately from scheduling it in
your work calendar. Consider estimating tasks in ideal person-days that
correspond to eight hours of development without interruption.

After estimating project time, try to develop a schedule that accoun
for overhead estimates and project dependencies. Remember that
Professional G Developers Toolkit Reference Manual 5-6 © National Instruments Corporation

Chapter 5 Scheduling and Project Tracking

s to

eek.
le

cts

t. If
ing

ure
Did

s.
eted

ped
tant

u
ing

, it
 top
and
ealt

e
t of

the
have weekly meetings to attend, existing projects to support, report
write, and so on.

Record your progress at meeting both time estimates and schedule
estimates. Track project time and time spent on other tasks each w
This information might vary from week to week, but you should be ab
to come up with an average that is a useful reference for future
scheduling. Recording more information helps you plan future proje
accurately.

Tracking Schedules Using Milestones

Milestones are a crucial technique for gauging progress on a projec
completing the project by a specific date is important, consider sett
milestones for completion.

Set up a small number of major milestones for your project, making s
that each one has very clear requirements. Because the question “
you reach the milestone?” only can be answered “yes” or “no”. An
answer of “mostly” or “90% of the project is complete” is meaningles
In the case of the 90% answer, the first 90% might have been compl
in two months while the remaining 10% will require another year.

To minimize risk, set milestones to complete the most important
components first. If, after reaching a milestone, the schedule has slip
and there is not enough time for another milestone, the most impor
components will have been completed.

Throughout development, strive to keep the quality level high. If yo
defer problems until a milestone is reached, you are in effect deferr
risks that might delay the schedule. Delaying problems can make it
seem like you are making more progress than you actually are. Also
can create a situation where you attempt to pile new development on
of a house of cards. Eventually the facade comes crumbling down,
you waste more time and resources than you would have if you had d
with the problem in the first place.

When working toward a major milestone, set smaller goals to gaug
progress. Derive minor milestones from the task list created as par
your estimation.

Major and minor milestones are discussed in depth in a number of
books listed in Appendix A, References.
© National Instruments Corporation 5-7 Professional G Developers Toolkit Reference Manual

Chapter 5 Scheduling and Project Tracking

t not
,
ey

ou
nt
ms
f

ave
d
sign
s,

dule
.

e
ere
Responding to Missed Milestones
One of the biggest mistakes people make is to miss a milestone bu
reevaluate the project as a consequence. After missing a milestone
many developers continue on the same schedule, assuming that th
will work harder and be able to make up the time.

Instead, if you miss a milestone you should evaluate the reasons y
missed it. Is there a systematic problem that could affect subseque
milestones? Is the specification is still changing? Are quality proble
slowing down new development? Is the development team at risk o
burning out from too much overtime?

Consider problems carefully. Discuss each problem or setback and h
the entire team make suggestion on how to get back on track. Avoi
accusations. You might have to stop development and return to de
for a period of time. You might decide to cut back on certain feature
stop adding new features until bugs are fixed, or renegotiate the
schedule.

Address problems as they arise. Then monitor progress to avoid
repeating mistakes or making new ones.

Missing a milestone should not come as a complete surprise. Sche
slips do not occur all at once; they happen little by little, day by day
Correct problems as they arise. Do not wait until the end of the
milestone or the end of the project. If you do not realize that you ar
behind schedule until the last two months of a year-long project, th
probably will not be anything you can do to get back on schedule.
Professional G Developers Toolkit Reference Manual 5-8 © National Instruments Corporation

© National Instruments Corporation 6-1 Professional G Developers Too
Chapter

6
Creating Documentation
p.

 are

re.

f

e of

 to
op
or
s an
n is

n is
g

evel
This chapter describes techniques for documenting your software.

You need to create several documents for software that you develo
There are two main categories for this documentation:

• Design-related documentation—Requirements, specifications,
detailed design plans, test plans, and change history documents
all examples of the kinds of design-related documents that you
might need to produce.

• User documentation—User documentation consists of printed
manuals and online help files that explain how to use your softwa

The style of each of these documents can be very different. Design
documentation generally is written for an audience with quite a bit o
prior knowledge of the tools they are using. User documentation is
written for an audience with a lesser degree of understanding.

The size and style of each document can vary according to the typ
project you are working on. For simple tools that only will be used
in-house, you might not need to do very much of either. If you plan
sell a product, you must allow a significant amount of time to devel
detailed user-oriented documentation that describes the product. F
products that must go through a quality certification process, such a
FDA review, you must ensure that the design-related documentatio
as detailed as required.

Developing Design-Related Documentation

The format and detail level of the documentation you develop for
requirements, specifications, and other design-related documentatio
determined by the quality goals of your project. If you are developin
to meet a quality standard such as ISO 9000, the format and detail l
of these documents are very different than an in-house project.
lkit Reference Manual

Chapter 6 Creating Documentation

ted

s

.
es

ory
ce
lso
ke
en
 to
og

ne,
ns

any

ss

you

er
ould
For a complete description of the types of documents you should
prepare as part of your development process, refer to one of the
resources in Appendix A, References.

There are features in LabVIEW and BridgeVIEW that can help you
produce some of the documentation you must create. Some of the
features in this toolkit that you can use to simplify the process are lis
below.

• History window—The History window is a place to record change
to a VI as you make them. When you check in a file using the
Source Code Control tools described in Chapter 11, Source Code
Control Tools, the History window text is retained by the SCC tools
You can view it later or print it using the report generation featur
of the SCC tools.

• SCC report generation—In addition to accessing the change hist
for a file, you can view the change history for all files under Sour
Code Control to see which files have changed and when. You a
can view listings of the projects under SCC and the files that ma
up those projects. This information either can be viewed on scre
or saved to a file so that you can import it into a word processor
add it to reports. See the description of the SCC Advanced dial
box in Chapter 11, Source Code Control Tools, for more details.

• Print documentation dialog box—With this dialog box, you can
create printouts of the front panel, block diagram, connector pa
and description of a VI. It also prints out the names and descriptio
of controls and indicators for the VI and the names and paths of
subVIs. You can print this information or save it to a file.

• Print hierarchy tool—With this tool, you can automate the proce
of printing documentation for the VIs in your VI hierarchy. The
print hierarchy tool is described in Chapter 9, Print Hierarchy Tool.

Developing User Documentation

The format of user documentation depends on the type of product
create.

Documentation for a Library of SubVIs
If the software you are creating is a library of subVIs for use by oth
developers, such as an instrument driver or add-on package, you sh
create documents with a format similar to the LabVIEW Data Acquisition
VI Reference Manual (LabVIEW Users) or Appendix A, MMI Function
Professional G Developers Toolkit Reference Manual 6-2 © National Instruments Corporation

Chapter 6 Creating Documentation

ave a

les

on,
f the
ane.

ith

n

list

ram
e
 can

ate
p
you

ith

ch
iew

re

Reference, in the BridgeVIEW User Manual (BridgeVIEW Users).
Because the audience is other developers, you can assume they h
working knowledge of LabVIEW or BridgeVIEW. Your documentation
might consist of an overview of the contents of the package, examp
of how to use the subVIs, and a detailed description of each subVI.

For each subVI, you might want to include the VI name and descripti
a picture of the connector pane, and the description and a picture o
data type for each of the controls and indicators on the connector p

You can generate much of this documentation easily if you use the
description feature for VIs and controls as described in the VI and
Control Descriptions section of this chapter. You can use Print
Documentation to create a printout of a VI in a format that is almost
identical to the format used in the VI Reference manuals that ship w
BridgeVIEW and LabVIEW.

If you want to incorporate the text into a manual or help file, you ca
use Print Documentation and then select Save as Text to save the text
information to a file. The text file produced includes the VI name,
description, all control and indicator data types and descriptions, a
of subVIs used by this VI, and the VI history. You can use a word
processing program to format this text and use a screen capture prog
to capture the connector pane picture from the help window and th
block diagram terminals for the data types. Screen capture programs
be found at many FTP locations.

A simple way to manage the data type pictures is to create a separ
document containing a complete set of terminal icons. You can kee
this document open at the same time you document your VIs. When
need a terminal description, you can copy and paste the icons.

Documentation for an Application
If you are developing an application for users who are not familiar w
LabVIEW or BridgeVIEW, your documentation will have a very
different format. Your documentation should cover basic features su
as installation and system requirements. It should provide an overv
of how the package works. If the package uses I/O, describe the
necessary hardware and any configuration that must be done befo
starting your application.

For each front panel the user interacts with, provide a picture of the
front panel and a description of the major controls and indicators.
© National Instruments Corporation 6-3 Professional G Developers Toolkit Reference Manual

Chapter 6 Creating Documentation

e

o
ed in

d on
a
the
inks

our
an

reate
ust

r

em

to

 a

e
Organize the front panel descriptions in a top-down fashion, with th
first front panels that the user sees documented first. As with the
previous section, you can use the Print Documentation dialog box t
access the VI and control names and descriptions. These can be us
conjunction with a screen capture program to document your VIs
effectively.

Creating Help Files

You can create your own online help or reference documents if you
have the right development tools. Online help documents are base
formatted text documents. You can create these documents using
word processing program, such as Microsoft Word, or using one of
tools described later in this section. Special help features such as l
and hotspots are created as hidden text.

You can use the same Print Documentation dialog box Save as Text
feature described earlier to help in creating the source material for y
help documents. Once you have the text for a VI in a text file, you c
add links and graphics to make it interactive.

Once you have created source documents, use a help compiler to c
a help document. If you need help files on multiple platforms, you m
use the help compiler for the specific platform on which they will be
used. You might want to use any of the following compilers. The
Windows compilers also include tools for creating help documents.

• (Windows) RoboHelp from Blue Sky Software, (800) 677-4946; fo
international customers (619) 459-6365

• (Windows) Doc-To-Help from WexTech Systems, Inc.,
(800) 939-8324.

• (Macintosh) QuickHelp from Altura Software, (408) 655-8005.

• (UNIX) HyperHelp from Bristol Technologies, (203) 438-6969

Once you have created and compiled your help files, you can add th
to the Help menu of LabVIEW, BridgeVIEW, or your own custom
application by placing them in the Help directory. You also can link
them directly from a VI in one of two ways:

• You can add a link using the VI Setup»Documentation option. Pop
up on the VI connector pane of the VI for which you want to link
file and select VI Setup»Documentation. Select the Help Tag box
and type the topic you would like to link to in the help file. Choos
Professional G Developers Toolkit Reference Manual 6-4 © National Instruments Corporation

Chapter 6 Creating Documentation

n
rsor
 a

u

xt
nt
s,

lect

hly

help
the help file by clicking the Browse... button. The path of the file
appears in the Help Path box. Then this link can be accessed from
the Help Window. Also, if the VI is a subVI on another block
diagram, you can pop up on the subVI icon and select Online Help
to jump to the selected topic in the specified help file.

• You can use the Help functions from the Functions»Advanced»
Help palette to jump to topics in specific help files
programmatically.

VI and Control Descriptions

VI Description
The VI description in the Get Info dialog box from the File menu is
often a user’s only source of information about a VI. A VI descriptio
is displayed in the Help window when the user places the mouse cu
on its icon, either the icon on the VI front panel or the icon used as
subVI in a block diagram.

Important items to include in a VI description are as follows:

• An overview of the VI function, followed by as much detail as yo
can supply.

• Instructions for use.

• Description of inputs and outputs.

Self-Documenting Front Panels
One way of providing important instructions is to place a block of te
prominently on the front panel. A concise enumerated list of importa
steps is invaluable. You might even put a suggestion there that say
“Select Get Info from the File menu for instructions” or “Select Show
Help from the Help Menu.” For long instructions, you can use a
scrolling string instead of a free label, but be sure to pop up and se
Make Current Value Default to save the text.

If that requires too much space on your front panel, you can put a hig
visible HELP button on the front panel instead. Put the instruction
string on its own front panel that pops up when the user pushes the
button. Use the window setup options in VI Setup to configure this help
panel as either a dialog box, requiring the user to press an OK button to
© National Instruments Corporation 6-5 Professional G Developers Toolkit Reference Manual

Chapter 6 Creating Documentation

and

ine

his
n
e

ess

u

ure.

lue

 of
or
close it and continue, or as a window that can be moved anywhere
closed anytime.

Alternatively, you can use this help button to open an entry in an onl
help file. You can use the Help functions from the Functions»
Advanced»Help palette to open the LabVIEW or BridgeVIEW Help
window or to open a help file and jump to a specific topic.

Control and Indicator Descriptions
Include a description for every control and indicator. You can enter t
with the Description popup menu item. An object description is show
in the Help window when the user places the mouse cursor over th
object.

When confronted with a new VI, a user has no alternative but to gu
the function of each control and indicator unless you include a
description. Always remember to enter a description as soon as yo
create the object. Then, if you copy the object to another VI, the
description is copied also. Also be sure to tell users about this feat

Every control and indicator needs a description that includes the
following information:

• Functionality

• Data type

• Valid range (for inputs)

• Default value (for inputs)

• Behavior for special values (0, empty array, empty string...)

• Additional information, such as whether the user must set this va
always, often, or rarely

Alternatively, the default value can be listed in parentheses as part
the VI name. For controls and indicators that are on the VI connect
pane, mark the inputs and outputs as required, recommended, or
optional. See the Connector Panes section in Chapter 7, Using
Consistent Style—The G Style Guide, for more information.
Professional G Developers Toolkit Reference Manual 6-6 © National Instruments Corporation

© National Instruments Corporation 7-1 Professional G Developers Too
Chapter

7
Using Consistent Style�
The G Style Guide
ram;

rs
rs

t of
 at
ject

,

 any
s,

e
e.
ry.
This chapter describes some recommended practices for good
programming technique and style. Remember that these are only
recommendations, not laws or strict rules. Consider your audience—
users need a good front panel; developers need a good block diag
and everybody needs good documentation. Several experienced G
programmers have contributed to this guide.

As mentioned in Chapter 3, Incorporating Quality into the Development
Process, inconsistent style causes problems when multiple develope
are working on the same project. The resulting VIs can confuse use
and be difficult to maintain. To avoid these problems, establish a se
style guidelines for VI development. You can establish an initial set
the beginning of the project and add additional guidelines as the pro
progresses.

A style checklist is included at the end of this chapter to help you
maintain consistency and quality as you develop VIs. To save time
review the list before and during development.

Hierarchy on Disk

The layout of your VIs on disk should reinforce the hierarchical
organization of your software. Make the top-level VI(s) directly
accessible. Place subVIs in subdirectories and group them to reflect
modular components you have designed, such as instrument driver
configuration utilities, and file I/O drivers.

Create a directory for all of the VIs for one application (pictured in th
following figure as a Macintosh folder), and give it a meaningful nam
Save the main VI(s) in this directory and the subVIs in a subdirecto
lkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

rd

rs
h (\),
st

 the

he
VI

. If
ad
 to
to
If the subVIs have subVIs, continue the directory hierarchy downwa
like an inverted tree.

Figure 7-1. A Directory Hierarchy

When naming VIs, VI libraries, and directories, avoid using characte
that are not accepted by all file systems, such as slash (/), backslas
colon (:), tilde (~), and so on. With the exception of Windows 3.1, mo
operating systems accept long descriptive names for files (up to 31
characters on a Macintosh, 255 characters on other platforms). See
Multiplatform Issues section of Chapter 11, Source Code Control Tools,
for more details on file name limits for different platforms.

Check preferences (Edit»Preferences) to make sure that the VI Search
Path contains <topvi>* and <foundvi>* (the * causes all
subdirectories to be searched). In the previous example MyApp.vi is
the top VI. This means that the application will search for subVIs in t
directory MyApp before searching the entire disk, and that once a sub
is found in a directory, the application will look in that directory for
subsequent subVIs.

Avoid creating files with the same name anywhere within your
hierarchy. Only one VI of a given name can be in memory at a time
you have a VI with a specific name in memory, and you attempt to lo
another VI that references a subVI of the same name, the VI will link
the VI in memory. If you make backup copies of your files, be sure
save them into a directory outside the normal search hierarchy.
Professional G Developers Toolkit Reference Manual 7-2 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

 the
it).

n

nto

s a
he

Is

et
ain
Hierarchy with VI Libraries
If you need to create an application or ship VIs to a customer using
Windows 3.1, save the VIs into VI libraries (LLBs). Within LLBs, the
VIs can have long, descriptive names even under Windows 3.1 (only
LLB itself and the directories will be subject to the 8+3 character lim

Note: LLBs are not supported by the G Source Code Control tools described i
Chapter 11, Source Code Control Tools. As described in that chapter, in the
section Using Individual Files Instead of VI Libraries (LLBs), you can
develop under Windows 95 or Windows NT using directories. When it
comes time to test and ship under Windows 3.1, you can save your files i
LLBs.

There are some disadvantages to saving VIs in a VI library. First, a
VI library grows, it takes longer to save VIs to it because a copy of t
entire library must be made during the save.

Second, VIs inside a VI library are not visible to your computer file
management system so they cannot be found using the operating
system’s Find File command.

The third disadvantage to LLBs is the lack of hierarchy within a VI
library. You can simulate one level of hierarchy by marking some V
as top-level VIs using the File»Edit VI Library dialog box. Top-level
VIs are listed above and apart from the others in the Open File dialog
box as shown in the following figure.

Figure 7-2. Top-Level VIs Listed at the Top of a VI Library

If you use LLBs, use a combination of directories and VI libraries to g
the advantages and avoid the disadvantages of both. Separating m
© National Instruments Corporation 7-3 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

Is

an

ut

irst

ent.
ges

nts,

VIs and subVIs into two or more VI libraries in the same directory
makes the VI libraries smaller and the hierarchy more obvious.

Figure 7-3. A Mixture of Directories and VI Libraries

You might move the LLBs containing subVIs into subdirectories to
distinguish the top-level VIs from the subVIs. You can break the subV
into multiple LLBs without making the top-level structure too
confusing.

Front Panels with Style

Consider the following analogy:

The front panel of a VI is to a G program what the cockpit is to
airplane. Just as cockpit instruments give the pilot control over
even the most technologically complex aircraft, G front-panel
instruments give you, the programmer, control over program inp
and output. No conventional programming environment has
anything comparable to LabVIEW’s and BridgeVIEW’s built-in
user interface.

How do you make the best use of this powerful interface? A user’s f
contact with your work (and with LabVIEW or BridgeVIEW) is the
front panel, so it had better be good.

Consistency
Even if you decide not to follow these guidelines, at least be consist
The user cannot adapt to your style if it contains disconcerting chan
with every front panel. While stylish fonts and garish colors are
eye-catching, they distract the user. Standardize on a few colors, fo
and layout practices that are attractive and functional. Professional
societies have written standards for man machine interface design.
Professional G Developers Toolkit Reference Manual 7-4 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

 to
ave
nts

ols

t in

n the

ate

 is
ser.
them

:

or
Text
Do not be tempted to use all of the fonts and styles available. Stick
three standard fonts—application, system, and dialog—unless you h
a specific reason to use a different font. For example monospace fo
(fonts that are not proportionally-spaced) are useful for string contr
and indicators where the number of characters is critical. To set the
default font, choose it from the Text menu without any text or objects
selected. You can select all labels that need changing and set the fon
all at once using the Text menu.

The actual font used for the three standard fonts varies depending o
platform, your preferences, and video driver settings (when working
under Windows). Text might appear larger or smaller. To compens
for this, allow extra space for larger fonts and keep the Size to Text
option on. Use carriage returns to make multi-line text instead of
resizing the text frame. When designing for multiple computers,
prevent front panels from becoming too busy and allow extra space
between controls. By allowing space, you can keep controls and
indicators from overlapping if they grow because of font changes. It
a best to keep front panels simple anyway, to avoid confusing the u
Fonts are the least portable aspect of the front panel, so always test
on all of your target platforms.

Some suggestions for a consistent set of text styles are listed below

Indicator and Control labels

• Application Font Bold or Dialog Font for controls and indicators
of primary importance; generally, these are on the connector.

• Application Font Plain for things like secondary indicators, or
controls used as constants.

Groups of Controls or Titles

• Dialog Font looks more important than application font, without
being too distracting.

Indicators and controls on pop-up panels

• Dialog Font makes homemade dialog boxes look more natural f
your platform.
© National Instruments Corporation 7-5 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

o,
tain

se

th
he
en
r.

te

s.

and

 by

hen
Color
Like fonts, it is easy to get carried away with color. The particular
danger of color is that it distracts the operator from important
information. For instance, a yellow, green, and shocking orange
background make it difficult to see a red danger light. Another problem
is that other platforms might not have as many colors available. Als
some users have black and white monitors, which cannot display cer
color combinations very well. For example, on a black-and-white
monitor, black letters on a red background is displayed as all black. U
a minimal number of colors, with lots of black, white and gray. The
following are some simple guidelines for using color:

• Never use color as the sole indicator of device state. People wi
some degree of color-blindness (5% of men) might not detect t
change. Also, multiplot graphs and charts can lose meaning wh
displayed in black and white—use line styles in addition to colo

• Backgrounds should be light gray, white or light pastel colors.

• Select bright, highlighting colors only when the item is very
important, such as an error notification.

• Always check your VI on other platforms and on a black-and-whi
monitor.

• Most of all, be consistent.

Graphics and Custom Controls
Enhance the functionality of your front panel with imported graphic
You can import bitmaps, Macintosh PICTs, Windows Enhanced
Metafiles, and text objects for use as backgrounds or in Pict Rings
custom controls.

Use a Pict Ring when a function or mode is conveniently described
a picture.

A custom Boolean control that is transparent in one state appears w
the state changes. A completely transparent Boolean is useful for
detecting mouse clicks in specified regions of the screen.
Professional G Developers Toolkit Reference Manual 7-6 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

hic
ime

 of

all
nd

VIs
nent

ir
ve
and

ind

VI

ce,

e
ts
Check how your imported pictures look when your VI is loaded on
another platform. For example, a Macintosh PICT file that has an
irregular shape might convert to a rectangular bitmap with a white
background on the PC or UNIX.

One disadvantage of imported graphics: They slow down screen
updates. Here are some tips to improve performance:

• Make sure indicators and controls are not placed on top of a grap
object. That way, the object does not have to be redrawn each t
the indicator is updated.

• If you must use a large background picture with controls on top
it, try breaking it into several smaller objects and import them
separately. Large graphics usually take longer to draw than sm
ones. For instance, you could import several pictures of valves a
pipes individually instead of importing one large picture.

Front Panel Layout
Consider the arrangement of controls on front panels. For top-level
that users see, place the most important controls in the most promi
positions. Use Align and Distribute to make a nice, regular layout. Use
Set Panel Order from the Edit menu to arrange controls in a logical
sequence (see the Key Navigation section of this chapter for more
information). Do not overlap controls with other controls or with the
own label, digital display, or other part, unless you are trying to achie
some special effect. Overlapped controls are much slower to draw,
flash (erase first). Place any Start or Stop buttons near the Run button
on the tool bar. Do this for two reasons: The buttons are easier to f
and click, and the Stop button will be more prominent than the Abort
button (if you did not hide it), and the user is less likely to abort the
by accident.

Use simple elements such as rounded rectangles to visually group
objects with related functions. Use clusters to group related data.
However, do not use clusters for aesthetic purposes only; it makes
connections to your VI more difficult to understand. Avoid importing
graphic objects that are inanimate copies of real controls. For instan
do not use a copy of a cluster border to group controls that are not
actually in a cluster.

For subVI front panels that the user does not see, the objects can b
placed so they correspond to the connector pattern. Generally, inpu
should be on the left and outputs on the right.
© National Instruments Corporation 7-7 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

st

d
sign
in

 for
ften

 the

r.
ge

ect

bel

ets.

 by
 the

”
Sizing and Positioning Front Panels
Front panels should fit on a monitor that is the standard size for mo
intended users. Shrink the window as much as possible without
crowding controls or sacrificing a good layout. If your VIs are intende
for in-house use and everyone has a large monitor, go ahead and de
large front panels. If you are doing commercial development, keep
mind that not everyone has a large monitor.

Front panels should open in the upper-left hand corner of the screen
the convenience of users with small screens. Sets of VIs that are o
opened together should be placed so the user can see at least a little bit
of each. Place front panels that open automatically in the center of
screen. Check the Auto-Center option in VI Setup to optimize this for
monitors of various sizes.

Moving a window is not considered a modification within the VI edito
To save the VI with the windows properly placed, make a small chan
(like moving a control by one pixel, then back) and save the VI, or sel
Save As... and use the same name.

Controls and Indicators

Descriptions
Every control and indicator should have a description. See the VI and
Control Descriptions section in Chapter 6, Creating Documentation, for
more details.

Labels
Labels are displayed in the Help window as part of the connector. La
the most important controls and indicators on a front panel in boldface.
Display controls and indicators that are rarely used in square brack
If the default value of a control is valid, add it to the name in
parentheses. Include the units of the value, where applicable. The
appearance of the inputs and outputs in the help window is affected
the Required/Recommended/Optional setting, which is described in
Connector Panes section of this chapter.

The name of a control or indicator should describe its function. For
example, for a ring or labeled slide with options for Volts, Ohms, or
Amperes, a name like “Select units for display” is better than “V/O/A
Professional G Developers Toolkit Reference Manual 7-8 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

e,
you

ory

 A
fault

h

e

ing
ing

on

mes
 an
nt,

e the

and is certainly an improvement over the generic “Mode.” Of cours
long names use valuable space on the block diagram, especially if
use any local variables or Bundle/Unbundle by Name functions. You
might prefer to give the control a short name, then add an explanat
label to it.

For Booleans, the name should give an indication of which state
corresponds to which function, while still indicating the default state.
recommended format for a Boolean where true means reset, but the de
is false is:

Reset Device? (F)

Free labels next to the Boolean can help clarify the meaning of eac
position on a switch, as shown in the following figure.

Enumerations vs. Rings
Rings and enumerations look identical on a front panel, but they ar
different. On a block diagram, a ring is simply an integer numeric.
Rings have the appearance of a pop up menu, associating each str
with a number. The strings can be set at edit time or at run time us
an attribute node.

An enumeration is similar to a ring, but the strings in the enumerati
are really a part of the enumeration’s data type. If you wire an
enumeration to a case structure, the case structure displays the na
from the enumeration instead of the numbers. Also, if you pop-up on
enumeration input of a function or subVI and create a control, consta
or indicator, the resulting object will also be an enumeration (with a
ring, you would simply get a numeric).

Because the names are really a part of the type, you cannot chang
names in an enumeration programmatically at run-time. Also, you
cannot compare two enumerations of different types. If you wire an
© National Instruments Corporation 7-9 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

 see

to

eck

nd

ow.

 on
nge

ck

,
 that

ges.
he

e

il

s of
enumeration to something that expects a standard numeric, you will
a coercion dot because the type is being converted.

Enumerations are useful for making code easier to read. Rings are
useful for front panels that the user interacts with, where you want
programmatically change the strings.

Default Values, Ranges, and Coercion
Expect the user to supply invalid values to every control. You can ch
for invalid values in your block diagram, or set the control Data Range
item to coerce values into the desired range (minimum, maximum, a
increment). If the values are not evenly spaced (such as a 1-2-5
sequence) use a function similar to the Range Finder VI shown bel

Other difficult situations must be handled programmatically. Many
GPIB instruments limit the permissible settings of one control based
the settings of another. For example, a voltmeter might permit a ra
setting of 2000 V for DC, but only 1000 V for AC. If the affected
controls like Range and Mode reside in the same VI, put the interlo
logic there (see the Attribute Nodes and Local Variables sections later in
this chapter). If one or more of the controls are not readily available
you can request the present settings from the instrument to ensure
you do not try to set an invalid combination.

There are some speed and memory usage drawbacks to limiting ran
The Data Range function adds some execution overhead, as does t
Find Range VI and similar VIs. If you choose Suspend for range error
action, the VI front panel remains in memory and will open if a rang
error occurs. This consumes additional memory.

Controls should have reasonable default values. A VI should not fa
when run “as-opened” with default values. Remember to show the
default in parentheses in the control’s label. Do not set default value
Professional G Developers Toolkit Reference Manual 7-10 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

at

ile
ath
in

nel.
ome

.

e

g the

he

to a
f

indicators like graphs, arrays, and strings without a good reason; th
wastes disk space when saving the VI.

Make intelligent use of default values. In the case of the high-level f
VIs such as the Write Characters to File VI, the default is an empty p
that forces a file dialog. This can save the use of a Boolean switch
many cases.

Attribute Nodes

Use attribute nodes to give the user more feedback on the front pa
There are many things you can do to make your VI easier to use. S
ideas include:

• Set the text focus to the main, most commonly used control.

• Gray out or hide controls that are not currently relevant or valid

• Guide the user through steps by highlighting controls.

• Change screen colors to bring attention to error conditions.

Key Navigation
Some users prefer to use the keyboard instead of a mouse. In som
environments, such as a manufacturing plant, only a keyboard is
available. Even if a mouse is used, keyboard shortcuts, such as usin
<Enter> key to select the default action of a dialog box, add
convenience.

For these reasons, consider including keyboard shortcuts to your
programs.

Consider the tab order of controls. If you select Edit»Panel Order, you
can see the order of your front panel controls. This order controls t
tab order for your front panel. Set the order to read left-to-right and
top-to-bottom.

Pay attention to the key navigation options for buttons on the front
panel. Key navigation options can be set from the Key Navigation pop
up of any control. Set the <Enter> key to be the keyboard shortcut
front panel’s default control. The only exception to this rule is that i
you have a multiline string control on the front panel, you might not
want to use the <Enter> key as a shortcut.
© National Instruments Corporation 7-11 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

s to
cuts
ront

kip

us

 to
tes a
ser

For
ith

 by

ires
t it
in

e
If your front panel has a Cancel button, assign a shortcut to the
<Escape> key. You also can use function keys as navigation button
move from screen to screen. If you do this, be sure to use the short
consistently. Do not use F5 on one front panel and F6 on another f
panel for the same action.

For controls that are offscreen, use the key navigation dialog box to s
over the controls when tabbing.

Also, you might consider using the Key Focus attribute to set the foc
programmatically to a specific control when the front panel first is
opened.

Local Variables
If you have controls with interdependent values, use local variables
keep the values consistent and valid. For example, a VI that genera
square wave might have two inputs—period and frequency. If the u
sets period, the VI should detect the change in value and change
frequency to the corresponding value.

Use local variables when you need a control/indicator combination.
example, the VI might set some parameter values (write to controls w
local variables), but the user must be able to override those values
entering his or her own (type into controls).

But, avoid using local variables if possible. Some users use local
variables because it seems like a convenient way to avoid passing w
from one point to another on your block diagram. The problem is tha
hides the data flow, making it more difficult to understand and mainta
the block diagram code. Also, it makes it easy to have race conditions,
in which multiple locations on the block diagram attempt to modify th
same local, resulting in the loss of data. See Chapter 26, Performance
Issues, of the G Programming Reference Manual, or Chapter 27,
Performance Issues, of the LabVIEW User Manual for more details
about using local variables.
Professional G Developers Toolkit Reference Manual 7-12 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

he

t.

off

ll

n if

s

e
ns
ut

t
k
VI Setup

Consider the items in the VI Setup dialog box carefully (pop up on t
VI icon to access VI Setup).

Think about the window behavior and style of every VI in your projec
Check Show Front Panel when Called and Close Afterwards if
Originally Closed for front panels that you want to appear and
disappear automatically. Check Dialog Box for front panels that should
wait for input from the user before the program can continue. Turn
the Allow User to Close Window option to keep users from accidentally
closing an important front panel while it is running. Disable the scro
bars, the menu bar, and the tool bar unless the user needs them.
Remember that you still can abort a VI by using the following
keyboard shortcuts:

• <Ctrl-period>(Windows)

• <Cmd-period>(Macintosh)

• <meta-period>(Sun)

• <Alt-period> (HP-UX)

You still can use the keyboard shortcuts for cut, copy, and paste eve
the menu is hidden.

Hide the Abort button if the user should not abort the VI—it is alway
best to provide a front-panel Boolean STOP button for VIs that loop.
Hiding the Abort button disables the keyboard shortcut for aborting th
VI. You can hide the single-stepping and execution highlighting butto
to save a small amount of execution time when the VI is finished; b
these debugging tools are often useful to a user who is trying to
understand how the block diagram works.

Do not set higher priority than the default on any VI without giving i
some serious thought. A high-priority VI that loops forever will bloc
execution of all other VIs. See Chapter 24, Understanding the
G Execution System, of the G Programming Reference Manual, or
Chapter 26, How LabVIEW Executes VIs, of the LabVIEW User Manual
for information on how priorities work.
© National Instruments Corporation 7-13 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

n
e to

ur

f

, you

is

lace
ally
 at

ng
ow

Connector Panes

Consider selecting a connector pattern with extra terminals. You ca
leave these extra terminals unconnected. That way, you do not hav
change the connector pattern for your VI if you find that you need
another input or output later on. Changing patterns requires
replacement of the subVI in all calling VIs. By adding extra, unused
terminals, you can add an input or output with minimal effect on yo
hierarchy.

Put at least one input and one output on each subVI, for the sake o
defining data flow. Error in and error out are ideal data flow
connections. If a set of VIs is used together and must be sequenced
can add a common thread. See the Adding Common Threads section later
in this chapter for more information.

Make connections for inputs on the left and outputs on the right. Th
conventional left-to-right data flow prevents complicated, unclear
wiring patterns.

When the same inputs and outputs are used in several VIs, try to p
them in the same location on each VI. For example, refnums are usu
located at the top left and right of an icon, and error I/O are located
the bottom left and right. Doing this makes it easier to wire icons
together.

On the front panel, you can edit required inputs for subVIs by clicki
on a terminal in the connector pane at the upper right side of the wind
and choosing This Connection is». If the connector pane is not visible,
select Show Connector Pane first. From the This Connection is»
submenu, select Required, Recommended, or Optional. By default,
inputs are all considered to be Recommended.

If you have the Show Warnings preference enabled, the error window
will warn you of unwired, recommended inputs.
Professional G Developers Toolkit Reference Manual 7-14 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

VI
p
I
 an
.

in
elp

ing

al,

ite
nd

u

ata
If you designate an input as Required, it must be wired in a calling
for the VI to work. Also, required inputs will appear in bold in the Hel
window. This is appropriate for inputs such as refnums where the V
does not make sense if the input is not wired. You should not make
input Required unless it is necessary for the VI to execute properly

If you make an input Optional, the Help window does not display it
simple help mode, which helps to keep the connector pane in the h
window from becoming too cluttered. With simple help mode turned
off, the input appears grayed out. You should use the Optional sett
for parameters that you rarely need to wire.

You can specify whether outputs should be recommended or option
but you cannot mark outputs as required.

Icons

Create a meaningful icon for every VI. Always create a black and wh
icon (for printouts and menus), and add color later. The examples a
vi.lib directories are full of well-designed icons that illustrate the
functionality of the underlying program. Collect ideas for icons. You
might have to use text if you cannot create a picture; however, if yo
intend to send your VIs to customers who speak other languages, a
well-chosen icon is much more effective.

If your VI is a mathematical function, draw a plot of that function.

For simple data processing functions, depict the input and output d
types and the nature of the operation. This can become cryptic,
however, so be careful.
© National Instruments Corporation 7-15 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

s.
ers

on
ta

e a

, to
an

ol
Within driver packages, maintain a unifying theme for groups of icon
Copy from drivers for similar instruments. This makes it easier for us
to convert from one instrument to another with minimal confusion.

Do not spoil the international language of pictures by creating an ic
that is a play on English words. For example, do not represent a da
logging VI by a picture of a lumberjack.

Icons for higher-level VIs might require some artistic talent. Here ar
few good icons, which are even better in color.

The Icon Editor features useful tools for creating icons. For example
make symbols for the various inputs and outputs on the icon, you c
display the connector pattern in the Icon Editor.

Use the Labeling tool to add text to an icon. Double-click on the
Labeling tool to change the font or font size. Some fonts, like Symb
and Glyph, contain many small pictures you can use in your icons.
Because it is in bitmap form, text typed in the Icon Editor does not
change when viewed on a machine with different fonts.
Professional G Developers Toolkit Reference Manual 7-16 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

ol,

l,
t are

nd

ake
s or

 of

y
an

es
m

.

The Block Diagram

The block diagram concept used in LabVIEW and BridgeVIEW is
considered a breakthrough in software engineering. Like any new to
developers still are learning optimal methods for its application.
Fortunately, programming in LabVIEW and BridgeVIEW is graphica
hence the name of the language—G, so we can create programs tha
both functional and visually engaging. This section contains
recommendations for improving block diagrams—both in function a
appearance.

Wiring Etiquette
Haphazard wiring can distract the user and make block diagrams
difficult to follow. Align and distribute objects to make a block diagram
as neat as the front panel. Employ symmetry and straight lines to m
the block diagram easy to read. Do not hide objects behind structure
other objects.

The following are some general wiring tips:

• Never route wires through an icon to a terminal on the other side
the icon.

• Avoid routing wires underneath structures or icons.

• Do not use local variables just to avoid having long wires. Ever
local variable that reads the data makes a copy of it and also c
lead to race conditions. See Chapter 26, Performance Issues, in the
G Programming Reference Manual, or Chapter 27, Performance
Issues, in the LabVIEW User Manual for more information.

• Reduce the number of pivot points in lines by aligning data sourc
and sinks. Use the cursor keys to remove single-pixel kinks fro
wires.

• Delete excess wires, such as loops, in wires.

• Evenly space parallel wires in straight lines and around corners
© National Instruments Corporation 7-17 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

ause
res

ut.
 the

lace
n
Notice object alignment, consistent spacing, and labels on the long
wires illustrated in Figure 7-4.

Figure 7-4. Good Wiring in a Simple Block Diagram

Labeling
Give major structures in the block diagram names and descriptions
through the Description pop-up item. This helps the user understand
complex segments of code.

Use enumerations as inputs to Case structures when possible, bec
the names from the enumerations appear at the top of Case structu
instead of numbers. Add comments to explain the purpose of each
frame. For comments, choose a font size and style that will stand o
Always label constants because they are not self-explanatory. Show
label of a subVI if the icon does not describe the function of the VI
sufficiently.

Use free labels on long stretches of wire to label the signal data. P
the label right on top of the wire with a transparent border as show
below:

---------- signal name -----------

Paste long comments into small string constants and make them
scrollable. Place large scrollable text items off to the side to avoid
cluttering the screen.
Professional G Developers Toolkit Reference Manual 7-18 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

t
k
e

ght

lp

)
e
oid
s

 of
em.
e

e
r
 a
rror
r its
n

r
When a VI is loaded on a different platform, the fonts change. Fron
panel labels might move automatically if they overlap controls. Bloc
diagram elements do not move to accommodate font changes. Plac
labels below objects, so if they grow and shrink on the bottom and ri
sides, they will stay next to the object. Right-justify any labels you
place to the left of an object.

Execution Sequence
The following sections describe G programming concepts that will he
you take advantage of the natural dataflow in G.

Left-to-Right Layouts
G was designed to use a left-to-right (and sometimes top-to-bottom
layout. Your block diagrams should follow this convention. While th
positions of program elements do not determine execution order, av
wiring from right to left. Only data connections (wires) and structure
determine execution order.

Data Dependency
As described in Chapter 18, Structures, in the G Programming Reference
Manual, or Chapter 19, Structures, in the LabVIEW User Manual,
artificial data dependency should be applied wherever practical. If a
section of the block diagram is missing the appropriate inputs or
outputs, you might use a single-frame Sequence structure. Do not
overdo it, though. To impose a pure dataflow model just for the sake
avoiding Sequence structures completely, is as bad as overusing th
Use dataflow programming techniques to create a clear, single-pag
main program.

Adding Common Threads
If you make a collection of subVIs that are used together often, giv
them all a common input/output terminal pair to chain them togethe
without requiring Sequence or Case structures. A good example of
common thread is an error code. Each VI should test the incoming e
and not execute if there is an existing error, then pass that error (o
own error) to the output. The only exception to this rule is a functio
like the Close File VI, which must perform cleanup regardless of
whether an error occurred previously. The Close File VI closes the
specified file and passes on error input as its output. This error
information is commonly kept in a cluster containing a numeric erro
© National Instruments Corporation 7-19 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

e

ata
e
tice

nt
uld
tees

e,
rds)

 the

 use
annot

d to

 For
code, a string containing the name of the function that generated th
error, and an error Boolean for quick testing. This technique is
sometimes called Error In/Error Out and is used in most of the I/O
libraries.

The following figure shows an example of the error cluster used by d
acquisition VIs. The While loop stops if an error is detected, and th
General Error Handler VI reports the error to the user at the end. No
the clean appearance of this style of programming.

Sequence Structures
Avoid overusing Sequence structures. G has a great deal of inhere
parallelism. (Future computers with multiprocessor architectures co
make good use of this feature.) Using a Sequence structure guaran
the order of execution but prohibits parallel operations. For instanc
asynchronous tasks that use I/O devices (GPIB, serial, plug-in boa
can run concurrently with CPU-bound operations. Actually, your
program might execute faster if you can add parallelism by reducing
use of Sequences. Sequence structures add no code or execution
overhead, but they do restrict parallelism. Sequences hide parts of the
program and interrupt the natural left-to-right flow of data.

While pure dataflow programming means avoiding Sequence
structures, there are cases where it is appropriate to use them. Only
Sequence structures if one node must execute before another and c
be connected by a wire. See the Data Dependency section earlier in this
chapter for more information. Sequence structures also can be use
conserve screen space, although proper use of subVIs is better.

There is an alternative to the Sequence structure, as described in
Lesson 8, Additional Topics, in the LabVIEW Advanced Course Manual,
called a State Machine. Use a Case structure wired to a counter in a
or While loop. This technique allows you to jump around in the
Professional G Developers Toolkit Reference Manual 7-20 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

tion

File
ted.

cy

.

or

m
 any
sequence by manipulating the counter. For instance, any frame can
jump directly to an error handling frame.

Watch Out for Missing Dependencies
Make sure that you have explicitly defined the sequence of events,
when necessary. Do not assume left-to-right or top-to-bottom execu
when no data dependency exists.

In the following example, there is no dependency between the Read
and Close File. More than likely, this program cannot work as expec

The following version of the block diagram establishes a dependen
by wiring an output of the Read File to the Close File; the operation
cannot end until the Close File receives the output of the Read File

Notice that the preceding example still does not check for errors. F
instance, if the file does not exist, the program does not display a
warning. The following version of the block diagram illustrates one
method for handling this problem. In this example, the block diagra
uses the error I/O inputs and outputs of these functions to propagate
errors to the simple error handler VI.
© National Instruments Corporation 7-21 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

e
tely.

or

VI
u

tly

fails

ery
 can

ber

put
can
tput.
sult
Check for Errors
When you perform any kind of I/O, consider the possibility of errors
occurring. Almost all I/O functions return error information. Make sur
that your program checks for errors and you handle them appropria

BridgeVIEW and LabVIEW do not handle errors automatically,
because users usually want very specific error-handling methods. F
example, if an I/O VI in your block diagram times out, you might or
might not want your entire program to halt. You also might want the
to retry for a certain period of time. In BridgeVIEW and LabVIEW, yo
make error-handling decisions.

The following list describes three situations in which errors frequen
occur:

• Incorrect initialization of communication or data that has been
improperly written to your external device

• Loss of power, broken, or improperly working external device

• Bugs in BridgeVIEW, LabVIEW, or other programs that occur
when you upgrade BridgeVIEW, LabVIEW, or your system
operating software

When an error occurs, you might not want certain subsequent
operations to take place. For instance, if an analog output operation
because you specify the wrong device, you might not want
BridgeVIEW or LabVIEW to perform a subsequent analog input
operation.

One method for managing such a problem is to test for errors after ev
function, and put subsequent functions inside case structures. This
complicate your diagrams and ultimately hide the purpose of your
application.

An alternative approach, which has been used successfully in a num
of applications and many of the VI libraries, is to incorporate error
handling in the subVIs that perform I/O. Each VI can have an error
input and an error output. You can design the VI to check the error in
to see if an error has previously occurred. If there is an error, the VI
be set up to halt execution and to pass the error input to the error ou
If there is no error, the VI can execute the operation and pass the re
to the error output.
Professional G Developers Toolkit Reference Manual 7-22 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

om
ple
le

e to

ters
r

e
ing.

.

is a

d
el.
hen
ce
le,

 a
Note: In some cases, such as a Close operation, you may want the VI to perform
the operation regardless of the error that is passed in to it.

Using the preceding technique, you can easily wire several VIs
together, connecting error inputs and outputs to propagate errors fr
one VI to the next. At the end of a series of VIs, you can use the Sim
Error Handler VI to display a dialog box if an error occurs. The Simp
Error Handler VI is located in the Functions»Time & Dialog. In
addition to encapsulating error handling, you can use this techniqu
determine the order of several I/O operations.

One of the main advantages in using the error input and output clus
is that you can use them to control the execution order of dissimila
operations.

The error information is generally represented using a cluster
containing a numeric error code, a string containing the name of th
function that generated the error, and an error Boolean for quick test
The following illustration shows how you can use this in your own
applications. Notice that the While Loop stops if it detects an error.

Sizing and Positioning of Block Diagrams
Like the front panel, the block diagram should fit the user’s monitor
The amount and density of wiring on a diagram often indicate the
programmer’s skill, forethought, and intentions. Having to remove a
section of code and put it in a subVI because you ran out of space
sign of not using effective top-down design.

When both the front panel and block diagram fit on an average-size
monitor, place the block diagram to the right of or below the front pan
This arrangement gives users the optimum view of your program. W
both the block diagram and front panel do not fit on one screen, pla
block diagrams in the upper left-hand corner of the screen. If possib
show the title bar of both the front panel and block diagram. To set
window’s position, move or modify any object and Save or select
Save As... and use the same name.
© National Instruments Corporation 7-23 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

 fit

rge
Figure 7-5 illustrates how both a front panel and block diagram can
comfortably on a small monitor with room to spare for the Help
window.

Figure 7-5. A Well-Placed Front Panel and Block Diagram

Optimization
There are many things you can do to optimize memory usage and
execution time of your G program. Generally an advanced topic,
optimization quickly becomes a concern when your program has la
arrays and/or critical timing problems. See Chapter 26, Performance
Issues, in the G Programming Reference Manual, or Chapter 27,
Performance Issues, in the LabVIEW User Manual for more information
on optimizing G programs.
Professional G Developers Toolkit Reference Manual 7-24 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

se
d
to

g

he
e

Code Interface Nodes
Code Interface Nodes (CINs) can obscure the function of your VIs. U
CINs only when absolutely necessary. Include the information liste
below to help your users understand what your CIN does and how
rebuild it.

CIN Description Contents
In the Description... pop up of a Code Interface Node, or in a scrollin
label next to the node, record the following information:

• Source code file name

• Platform and operating system

• Compiler and version

• Location of the source code

• What the code does

• List of other files required to build the CIN

• Other critical information required to maintain the CIN

CIN Source Code
You should enter the same kind of information that is entered into t
Description... pop up into the header file with the source code. If th
source code is not too long, paste it into a scrollable block diagram
string constant.
© National Instruments Corporation 7-25 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

d
r

B.

s

ls

tion.
Style Checklist

Use the following checklist to help you maintain consistent style an
quality. We recommend you copy this checklist for use on all of you
projects.

VI Checklist

❑ Organize VIs in a hierarchical directory with easily accessible
top-level VIs and subVIs in subdirectories.

❑ Avoid putting too many VIs in one library because large LLBs take
longer to save.

❑ With LLBs, use Edit VI Library to mark top-level VIs.

❑ If the VIs will be used as subVIs, use Edit Control and Function
palettes to create a .mnu file or edit the menu that is part of the LL
Be sure to do the following:

• Arrange palettes.

• Name menus.

• Hide dependent subVIs.

❑ Give VI meaningful names without special characters such as \, /, :,
and ~.

❑ Use standard extensions so Windows and Unix can distinguish file
(.vi, .ctl).

❑ Capitalize Initial Letters of VI Names.

❑ Distinguish example VIs, top-level VIs, subVIs, controls, and globa
by saving them in subdirectories, separate libraries in the same
directory, or by giving them descriptive names such as MainX.vi ,
Example of X.vi , Global X.vi , and TypeDef X.ctl .

❑ Write a VI description; proofread it; check Help window.

❑ Include your name and/or company, and the date in the VI descrip
Professional G Developers Toolkit Reference Manual 7-26 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

g:

e

t.

el

ctor
❑ When you modify a VI, use the history window to document your
changes.

❑ Create a meaningful black & white icon (color icons optional).

❑ Make a connector pane; provide in and out data flow; leave extra
inputs and outputs for later development; use consistent layout.

❑ Consider VI and window options carefully. Remember the followin

• Do not set higher priority without serious thought.

• Remember that hiding menu bars and using dialog box styl
makes Help and VI description inaccessible.

• Hiding Abort and debugging buttons increases performance
slightly.

❑ Set print options to print attractive output in the most useful forma

❑ Make test VIs that check error conditions, invalid values, and canc
buttons.

❑ Save test VIs in a separate directory so you can reuse them.

❑ Load and test VIs on multiple platforms, making sure labels fit and
window size and position are correct.

Front Panel Checklist

❑ Give controls meaningful names; use consistent capitalization,
preferably all lower case or Initial Capitals.

❑ Make name label background transparent.

❑ Check for consistent placement of control names (e.g. upper left).

❑ Use standard, consistent fonts throughout all front panels.

❑ Use Size to Text for all text (for portability), add carriage returns if
necessary.

❑ Use required, recommended, and optional settings on your conne
pane.
© National Instruments Corporation 7-27 Professional G Developers Toolkit Reference Manual

Chapter 7 Using Consistent Style�The G Style Guide

trol

t

 for

s
❑ Put default values in parentheses after input names.

❑ Include unit information in names, if applicable,
e.g. time limit (10 seconds).

❑ Write descriptions for controls (including array/cluster/refnum
elements). Remember description might need to be changed if con
is copied.

❑ Arrange controls logically—for top-level VIs, put the most importan
controls in most prominent positions; for subVIs, put inputs left,
outputs right, and follow connector arrangement.

❑ Arrange controls attractively, using Align & Distribute.

❑ Do not overlap controls.

❑ Use color logically and sparingly, if at all.

❑ Use error in, error out clusters where appropriate.

❑ Consider other common thread controls, such as taskID, refnum, and
name.

❑ Provide a Stop button if necessary; do not use the Abort button to stop
a VI (Hide the Abort button).

❑ Use rings and enumerations where appropriate; if using a Boolean
two options, consider using an enumeration instead for future
expansion of options.

❑ Use custom control or TypeDef for common controls (esp. for ring
and enumerations); include it with VIs.

❑ In control VI, label controls with the same name as the VI
(e.g., Alarm Boolean.ctl has default name Alarm Boolean).
Professional G Developers Toolkit Reference Manual 7-28 © National Instruments Corporation

Chapter 7 Using Consistent Style�The G Style Guide

o

te

bel

p

ues.

.

lly
Block Diagram Checklist

❑ Avoid creating extremely large block diagrams; limit them to one t
two screens if possible.

❑ Label controls, important functions, and subVIs, constants, attribu
nodes, locals, globals, and structures.

❑ Add comments (use object labels instead of free labels where
applicable, scrollable strings for long comments).

❑ Make comment background transparent to distinguish from name
labels.

❑ Place labels below objects when possible and right-justify text if la
is placed to the left of an object.

❑ Use standard, consistent font conventions throughout.

❑ Use Size to Text for all text, add carriage returns if necessary.

❑ Reduce white space in smaller block diagrams, but allow at least
3–4 pixels between objects.

❑ Flow data from left-to-right; wires enter from left, exit to right (not to
or bottom).

❑ Align & distribute functions, terminals, constants.

❑ Label long wires with small transparent labels.

❑ Do not wire behind objects.

❑ Make good use of reusable, testable subVIs.

❑ Make sure the program can handle error conditions and invalid val

❑ Show name of source code, or include source code, for any CINs

❑ Save with most important or first frame of structures showing.

❑ Review efficiency (especially data copying) and accuracy (especia
parts without data dependency).
© National Instruments Corporation 7-29 Professional G Developers Toolkit Reference Manual

© National Instruments Corporation 8-1 Professional G Developers Too
Chapter

8
VI Metrics Tool
e

s)

o
This chapter describes how to use the VI Metrics tool to measure th
complextity of your application.

The VI Metrics tool provides a way to measure the complexity of an
application similar to the widely used Source Lines of Code (SLOC
metrics for textual languages. With the VI Metrics tool you can view
statistics about VIs, which can be useful in finding areas that are to
complex or in establishing baselines for estimating future projects.

To use the tool, first open the VI(s) that you want to analyze. Then
select VI Metrics from the Project menu. The VI Metrics dialog box
appears.

Figure 8-1. VI Metrics Tool Dialog Box
lkit Reference Manual

Chapter 8 VI Metrics Tool

s
ox
Is

r of
n
and
ber
ode

,
des
es,

ow

t are
or

ree

Use the ring at the top of the dialog box to select from the list of VI
with open front panels in memory. After you select a VI, the dialog b
updates the list at the bottom with the names of the VI and its subV
plus information on each VI.

For each VI in the selected hierarchy, the dialog box lists the numbe
nodes contained within that VI. Nodes are the executable objects o
your block diagram. They are analogous to statements, operators,
subroutine calls in conventional programming languages. This num
gives you a rough metric that is comparable to the Source Lines of C
metric commonly used with textual languages.

The number of nodes includes functions (Add, Subtract, and so on)
subVI calls, and structures (case, while loop, and so on). It also inclu
terminals for front panel objects, constants, local and global referenc
and attribute nodes. Notice for attribute nodes, reading multiple
attributes with the same node counts as one node. If you want to kn
the total number of attributes read or written by a VI, see the User
Interface Statistics section later in this chapter.

The number of nodes does not include wires, tunnels, or objects tha
subcomponents of structures such as the loop iteration count of a f
loop or a sequence local.

As an example, the following block diagram contains eight nodes (th
terminals, a constant, a random number function, a multiply, a case
structure, and a for loop).
Professional G Developers Toolkit Reference Manual 8-2 © National Instruments Corporation

Chapter 8 VI Metrics Tool

ets
of
te

nd

le
ch

Additional Statistics

In addition to measuring the number of nodes, the dialog box also l
you measure a number of other statistics related to the complexity
your VI(s). To show the additional information, turn on the appropria
category checkbox at the top of the dialog box.

Block Diagram Statistics
• Structures—Number of for loops, while loops, case structures, a

sequence structures.

• Block Diagrams—Number of block diagrams. Each VI has a sing
top level block diagram. In addition, it has one subdiagram for ea
loop and for each frame of a sequence or case.

• Maximum block diagram depth—Deepest nesting level of block
diagrams in a VI. If your VI has no structures (cases, loops,
sequences), it has a depth of 0.

• Diag width—Width of the block diagram in pixels.
© National Instruments Corporation 8-3 Professional G Developers Toolkit Reference Manual

Chapter 8 VI Metrics Tool

rces

k
red

.

.

k
• Diag height—Height of the block diagram in pixels.

• Wire sources—Wire sources measures the total number of sou
in your VI. Each wire has a single source, but it can branch to
multiple destinations. If, however, a wire crosses from one bloc
diagram to another (through a tunnel), then the tunnel is conside
to be a new source.

User Interface Statistics
• Controls—Number of top level controls on a VI front panel.

A cluster or an array is counted as only a single control.

• Indicators—Number of top level indicators on a VI front panel.
A cluster or an array is counted as only a single indicator.

• Attribute reads—Number of attribute reads by a VI block diagram
Note that if you read multiple attributes with the same attribute
node, each attribute increments this number.

• Attribute writes—Number of attribute writes by a VI block
diagram. Note that if you write multiple attributes with the same
attribute node, each attribute increments this number.

Global/Local Statistics
• Global reads—Number of reads of global variables

in a VI block diagram.

• Global writes—Number of writes to global variables
in a VI block diagram.

• Local reads—Number of reads of local variables
in a VI block diagram.

• Local writes—Number of writes to local variables
in a VI block diagram.

CIN/Shared Library Statistics
• CINs—Number of Code Interface Nodes in a VI’s block diagram

• Shared library calls—Number of Call Library Nodes in a VI bloc
diagram.
Professional G Developers Toolkit Reference Manual 8-4 © National Instruments Corporation

Chapter 8 VI Metrics Tool

ne.

ion
lib
chy.

d.
 of

y

is a

 are

 for
tter

tric

n
b
SubVI Interface Statistics
• Connector inputs—Number of controls on a VI connector pane.

• Connector outputs—Number of indicators on a VI connector pa

Files in vi.lib

By default, the dialog box excludes VIs in vi.lib from the listing and
from the totals. Calls to vi.lib VIs are counted as nodes, but informat
about the number of VIs that they call and the complexity of those vi.
VIs are not added into the total measurements for the selected hierar
This is appropriate if you are trying to get a measurement of the
complexity of the code that you have written. You can turn off the
exclude vi.lib files option if you want to gather statistics on vi.lib VIs
as well.

Saving Metric Information

You can save the metric information for a VI hierarchy to a text file
using the Save… button. Only the columns that are displayed are save
The information at the top of the dialog box concerning the number
user VIs and the number of library VIs is also saved to the file. The
information is saved in a tab-delimited format so that you can easil
read it into a spreadsheet or read and parse it using VIs.

As mentioned earlier, any metric, such as number of lines of code,
crude measurement of complexity. This dialog box lets you access
many statistics because you may find that some of the other columns
more valuable in some cases. For example, you might decide that,
user interface VIs, certain statistics can be combined to give you a be
idea of how complex a VI is. In that case, you can make your own me
by saving the information about a VI and writing VIs to parse the
results, combining fields to produce a new measurement of a VI
complexity.

National Instruments is interested in hearing about combined or
alternative metrics that you find useful in analyzing your VIs. You ca
use the Technical Support form at the back of the manual or our we
site (www.natinst.com) to submit suggestions in this area.
© National Instruments Corporation 8-5 Professional G Developers Toolkit Reference Manual

© National Instruments Corporation 9-1 Professional G Developers Too
Chapter

9
Print Hierarchy Tool

,
ats

ect

I
w

f the
This chapter descibes how the Print Hierarchy tool makes it easy to
print out documentation for the VIs in your hierarchy. With this tool
you can automate the process of printing out VIs in any of the form
Print Documentation offers.

To use the tool, first open the VI(s) that you want to print. Then sel
Print Hierarchy… from the Project menu.

Figure 9-1. Print Hierarchy Tool Dialog Box

Using the ring at the top of this dialog box, select the name of the V
you want to print. The VI and its subVIs are listed in the listbox belo
this. By default, all files in the hierarchy are selected except VIs in
vi.lib.

If you select Print selected VI(s), the Print Documentation dialog box
is displayed, giving you a chance to select the contents and layout o
printout. If you want to print VIs in vi.lib, turn off the Exclude vi.lib VIs
checkbox.
lkit Reference Manual

Chapter 9 Print Hierarchy Tool

ses
se

g

 at

ing
p
By default, the tool prompts you only once for the format, and then u
that format information for all of the selected VIs. If you want to choo
the format for each VI, turn off the Show print documentation dialog
only first time checkbox at the bottom of the dialog box before printin
the VIs.

For large hierarchies, you might not want to print the entire hierarchy
once. Because each printout is a separate print job, printing a large
number of VIs can use a lot of space in the print queue. When print
many VIs, you might want to print them in sets of 10 to avoid filling u
the queue.
Professional G Developers Toolkit Reference Manual 9-2 © National Instruments Corporation

© National Instruments Corporation 10-1 Professional G Developers Too
Chapter

10
File Manager Tool
 to
o

 in
ing

x.
This chapter describes how the File Manager tool makes it possible
easily copy, rename, or delete files within VI Libraries (LLBs). It als
can be used to convert LLBs to directories, an important step if you
want to manage your VIs with the Source Code Control tools.

To use the tool, select File Manager… from the Project menu.

Figure 10-1. File Manager Tool Dialog Box

It is best to avoid performing a file operation on a VI that is already
memory, so you should close all VIs that might be affected before us
this dialog box.

With this dialog box you can view two locations (directory or LLB)
simultaneously. These listings behave like the normal file dialog bo
lkit Reference Manual

Chapter 10 File Manager Tool

sing

is
u
ted

e
t
me
ou

to
|).
 for

n
ut

le
n
ame
Once you have selected a file, you can copy, rename, or delete it u
the corresponding buttons between the two lists.

If you select an LLB, you can press the Convert LLBs to Dirs button to
convert it to a directory of VIs. If you select a directory and press th
button, the tool will scan for all LLBs within that directory and give yo
the option to convert them to directories. The new directory is crea
in the same location as the original LLB.

If you give the new directory a name that is different from that of th
original LLB, LabVIEW or BridgeVIEW has to search for the files tha
were within the LLB when calling a VI (even when the name is the sa
minus the .llb extension). When you convert an LLB to a directory, y
are given the option to back up the LLB (the .llb extension will be
changed to .llx).

The Check Filenames button scans a directory or VI library for
filenames that are not platform-independent. It scans all filenames
verify that they do not contain invalid characters (:, \, /, ?, *, <, >, or
Filenames are also verified to be 31 characters or less (a limitation
the Macintosh). The Check Filenames option scans files within LLBs
as well. Files within LLBs are portable, even if their names contain
characters that are invalid on some platforms. This tool scans withi
LLBs to help you detect potential problems if you move your files o
of VI libraries. Multiplatform filename issues are described in more
detail in the Multiplatform Issues section of Chapter 11, Source Code
Control Tools.

At the bottom of the dialog box are a set of options for displaying fi
modification dates next to each file. If you select this option, you ca
choose to sort the files by date and to gray out files that have the s
name and date in both directory listings. This can be useful in
comparing two directories to see if any files have changed.
Professional G Developers Toolkit Reference Manual 10-2 © National Instruments Corporation

© National Instruments Corporation 11-1 Professional G Developers Too

11Ch11.fm Page 1 Monday, May 19, 1997 5:23 PM
Chapter

11
Source Code Control Tools
urce

e
es.

ng

r
hat

ile,
e

llow

cks

 of
an

ade

This chapter describes the G Source Code Control tools. The G So
Code Control (SCC) tools, accessible from the Project»Source Code
Control menu, let you add files to SCC and access those files from
within the LabVIEW or BridgeVIEW environment.

General Source Code Control Concepts

Source Code Control tools help significantly in managing projects.
They help with sharing files among multiple developers and multipl
projects. SCC tools maintain a centralized master copy of project fil
As you make changes, you update this master copy to reflect those
changes. This makes it easy for any developer to access the latest
version of the project files. Also, it encourages code reuse by maki
all code easily accessible.

SCC tools also help improve security and quality. When a develope
decides to modify a file, he or she checks out the file, marking it so t
other developers cannot modify the same file at the same time
accidentally. When he or she completes his or her changes to the f
the developer checks in the new version of the file into Source Cod
Control, and it becomes part of the master copy of the project. If
incorrect changes are made, most Source Code Control systems a
you to access previous versions of files.

SCC tools help track changes to your project. When a developer che
in a file, SCC tools ask the user to describe the changes. This
information is maintained so that you clearly document the evolution
your project. In addition to maintaining the source code, SCC tools c
manage all aspects of your project, including specifications and
illustrations, and they can also keep track of the changes that are m
to those documents. This ability to track the evolution of software is
important to most organizations that are concerned with quality.
lkit Reference Manual

Chapter 11 Source Code Control Tools

ate

Is

ut

I

re

ed

you
ain
ows

ent,
to
I

stall
ect

ers

h as
em.

11Ch11.fm Page 2 Monday, May 19, 1997 5:23 PM
Using Individual Files Instead of VI Libraries (LLBs)

VI libraries (LLBs) give you a method of storing multiple VIs within
the same file. The main advantage of this is that it allows you to cre
VIs with long, descriptive names even under Windows 3.1, in which
filenames are limited to 8+3 characters in length. When you store V
in a VI Library, only the VI library name itself needs to be limited to
8+3 characters in length.

You should not use VI libraries, however, for files that you want to p
under Source Code Control. VI libraries are not practical for SCC
because SCC tools cannot manage the files within a VI library
individually. If the G SCC tools were to try to manage files within a V
library, you would have to check out the entire VI library when you
want to make changes to any file within the VI library. Because VI
libraries do not permit fine enough control over individual VIs, they a
not supported by the G SCC tools.

The primary reason you might want to use VI libraries is that you ne
to support Windows 3.1, where filenames are very limited. The G
Source Code Control tools are not supported under Windows 3.1. If
need to support Windows 3.1, consider whether you can do your m
development under other supported operating systems such as Wind
95 or NT where you can use the G SCC tools. When doing developm
save your VIs as individual files, not in VI libraries. When you need
release your VIs for use on Windows 3.1, you can save them into V
libraries at that point.

The File Manager tool described in the previous chapter can help in
moving VIs to and from VI libraries.

Source Code Control Configuration

Before you can use the G Source Code Control tools, you need to in
the software and configure it. When you install the software, you sel
whether you are installing as an administrator or a user. The
administrator has an extra menu option: Project»Source Code
Control»Administration . The administrator uses this option to set up
the Source Code Control system so that it is usable by others. All us
use the Project»Source Code Control»Local Configuration option to
connect to the Source Code Control system and specify options suc
where files are copied to locally from the Source Code Control syst
Professional G Developers Toolkit Reference Manual 11-2 © National Instruments Corporation

Chapter 11 Source Code Control Tools

y are
de
ey
his
ly
be

or

eds

y

s

11Ch11.fm Page 3 Monday, May 19, 1997 5:23 PM
Selecting the Source Code Control System
The G Source Code Control tools are general-purpose because the
built on top of a generic plug-in architecture for managing Source Co
Control. In addition to a built-in system for managing source code, th
can communicate with third-party Source Code Control systems. At t
time, Microsoft Visual SourceSafe for Windows 95 and NT is the on
supported third-party Source Code Control system, but others can
added based on demand.

Figure 11-1. G Source Code Control Tools Work with Built-In and Third-Party Systems

Features of the Built-In Source Code Control System
The built-in Source Code Control System is a fairly simple system f
sharing files. It manages files by storing them in a master directory
(typically a network directory) that is accessible to everyone that ne
access to the files.

The built-in system has many of the features found in full featured
source code systems, including access to previous versions, histor
maintenance, and labeling of versions for easy retrieval.

Following is a list of some of the advantages the built-in system ha
over other third-party systems.

• The built-in system is available on all platforms for which
LabVIEW and BridgeVIEW are available. Most third-party tools
work only with one or two operating systems.

• The built-in system comes with the Professional G Developers
Toolkit. Most third-party tools will add additional cost to
deployment of a Source Code Control system within your
organization.

G Source Code Control Tools

Built-in SCC System

Visual SourceSafe

Other

oror
© National Instruments Corporation 11-3 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

 in

ms
oes
 the

her

s to

ver
u

ers
ll

ver
ol
ions
se

e

n if

 the
e

by

11Ch11.fm Page 4 Monday, May 19, 1997 5:23 PM
There are some advantages, however, to using a third-party system
conjunction with the G SCC tools.

• A major difference between the built-in system and other syste
is that while the built-in system provides source code access, it d
not provide as much security as some other systems. Basically,
built- in system provides much of the full functionality of full
Source Code Control systems, but it relies on trust more than ot
systems.

It uses your LabVIEW or BridgeVIEW user name (Edit»User
Name...) when checking files in and out. It does not require a
password, so it can be circumvented if a user consciously want
do so. Also, because the files are stored as normal files on a
network accessible drive, theoretically users can modify the ser
files directly. Finally, some Source Code Control systems let yo
specify permissions for each file for each user so that some us
might be able to read a file, but not modify it, while others have fu
access to a file. The built-in system does not currently let you
specify file permissions.

• The built-in system does not use compression for files on the ser
and for storage of previous versions. Some Source Code Contr
systems store files on the server and differences between vers
(deltas) in more efficient compressed formats. However, becau
VIs are stored in a binary format, most Source Code Control
systems do not handle deltas on VIs very efficiently.

Features of Third-Party Source Code Control
Systems
As mentioned earlier, the plug-in architecture of the G Source Cod
Control tools supports using third-party SCC systems. This plug-in
architecture is based on VIs, so it is possible to even create your ow
it is important to support a specific SCC system within your
organization. At this time, Microsoft Visual SourceSafe for
Windows 95/NT is the only supported third-party SCC system, but
others may be added based on customer demand.

While you can use third-party tools, you might not be able to take
advantage of all of the features that a given tool offers. For instance,
G Source Code Control tools do not support a feature found in som
systems called branching where different projects use different
versions of a VI. If you wish to branch development, you must do it
saving the VI with a new name.
Professional G Developers Toolkit Reference Manual 11-4 © National Instruments Corporation

Chapter 11 Source Code Control Tools

les
e

ld
.
g
ls
C

ify
d
h as

or
ls.

ne

n its
mat
s for

m

11Ch11.fm Page 5 Monday, May 19, 1997 5:23 PM
Also, the G Source Code Control tools keep track of the status of fi
internally, including information on the projects a file belongs to, th
user who has the file checked out, modification dates, and so on.
Consequently, if you are using a third-party SCC system, you shou
not perform some operations “behind the back” of the G SCC tools
Specifically, if you want to check VIs in or out, you should do it usin
the G SCC tools. If you check a file in or out using the third-party too
directly (for example, from the SourceSafe environment), the G SC
tools will become confused.

Essentially, it is permissible to do any operation that does not mod
the master copy of a file, including retrieving files, labeling files, an
report generation. You also can use features of third-party tools suc
file permissions to indicate that specific users cannot modify certain
files. However, you should not modify the master file by deleting it
replacing it with a different version except from within the G SCC too

Microsoft Visual SourceSafe for Windows 95/NT

Visual SourceSafe is a popular Source Code Control package from
Microsoft. It manages files on a network that is accessible to everyo
who needs access to the files.

Visual SourceSafe manages the files and the deltas between files i
own internal database format and stores them in a compressed for
that uses less storage. Also, it lets you specify user level permission
specific files.

Administration (Administrator Only)
The Administrator has an extra menu option, Project»Source Code
Control»Administration , that he or she uses to set up the SCC syste
so that it is usable by other users.
© National Instruments Corporation 11-5 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

re
ing

fe
ser

se.

e

s

5,
ox.

11Ch11.fm Page 6 Monday, May 19, 1997 5:23 PM
The primary thing that the Administrator does is select and configu
the SCC system that the G SCC tools use for maintaining files. The r
lets him or her choose from the built-in system or other supported
third-party systems (see the Selecting the Source Code Control System
section for information on the differences between these options).

Administration of Visual SourceSafe
With Visual SourceSafe, it is important that you first install SourceSa
on a server and then use SourceSafe’s administration tool to add u
accounts for each user.

After you have installed SourceSafe, you need to run the
Project»Source Code Control»Administration dialog box, select
Microsoft Visual SourceSafe from the ring, and select OK to add
configuration files used by the G SCC tools to SourceSafe’s databa
The G SCC tools maintain two files.

• sccfiles.lst —This is a master file list that the G SCC tools us
to maintain information about each file, including the projects to
which the file belongs.

• sccplats.txt —This file contains a list of the platforms that user
can select for retrieving files.

If you want, you can also configure the platforms (that is, Windows 9
68K Macintosh, and so on) that a user can select from this dialog b
See the Edit Platform List section for more information.
Professional G Developers Toolkit Reference Manual 11-6 © National Instruments Corporation

Chapter 11 Source Code Control Tools

ou

x by

file
, the
 is
re

ny
. If
e, a
 no
s no

ose

u

11Ch11.fm Page 7 Monday, May 19, 1997 5:23 PM
Administration of the Built-In System
If you select the built-in system, you are given a dialog box that lets y
configure system-wide options that affect all users. If you need to
change one of these settings later, you also can get to this dialog bo
selecting Configure… from the Administration dialog box.

For the master directory, you should select a directory on a network
system that is accessible to all users. As users check files in and out
files are copied to this directory, and history information for each file
maintained within this directory. Consequently, you should make su
that this directory has plenty of disk space available to it.

The ring at the bottom of this dialog box lets you configure how ma
backups should be maintained for files under Source Code Control
you decide to maintain backups of files, when a user checks in a fil
copy of the old file is created. You can configure the system so that
backups are maintained, a specific number is maintained, or there i
limit on backups. In general, it is probably good to maintain a small
number of backups so that you can retrieve older versions. If you cho
to have no limits on backups, you will need to delete old versions
periodically to avoid running out of storage space on the server. Yo
can monitor the amount of storage used for backups from the
Project»Source Code Control»Advanced dialog box.
© National Instruments Corporation 11-7 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

hey

sees

 in

u

ou
t
tect
nd
ou

ave

ve
o by

11Ch11.fm Page 8 Monday, May 19, 1997 5:23 PM
Edit Platform List
Pressing the Edit Platform List… button in the Administration dialog
box displays a list of the platforms that users can select from when t
do local configuration.

Each entry consists of a long name and an abbreviation. The user
long name when performing Local Configuration and if he or she
chooses to mark a file as platform-specific. The abbreviation is used
file lists such as in the Advanced dialog box.

The main reason you might want to edit this list is if LabVIEW or
BridgeVIEW becomes available for a new platform. In that case, yo
can add the name to the list and immediately be able to support it.

In general, it is probably a good idea to not modify this list, even if y
initially only need to support a single platform. Assuming you do no
change any of the existing items, the G SCC tools automatically de
the platform being used. If you delete one of the existing platforms a
you later decide that you want to add support for that platform then y
must add that name back in exactly as it was spelled originally to h
the auto detection work correctly.

The list is limited to 32 entries. Do not change the order after you ha
added files, because each file remembers the platforms it applies t
number(s), not by name.
Professional G Developers Toolkit Reference Manual 11-8 © National Instruments Corporation

Chapter 11 Source Code Control Tools

d
 the

em.

CC
tor

he
 that

m,

ry
ers

11Ch11.fm Page 9 Monday, May 19, 1997 5:23 PM
While Windows 3.1 is not supported directly by this toolkit, it is liste
as an option so that you can have files specific to Windows 3.1. See
Multiplatform Issues section for more details.

Local Configuration (All Users)
Each user has to configure the G SCC tools before they can use th
You do this configuration using the Project»Source Code
Control»Local Configuration dialog box.

The main thing each user needs to do in this dialog box is select the S
system that the administrator configured. Ask your SCC administra
to determine which system your site uses.

User Configuration of Visual SourceSafe
To use SourceSafe, there is relatively little configuration needed. T
primary thing you need to do is to install SourceSafe and make sure
your administrator has assigned you an account and password.

Other than that, just specify the local work directory and the platfor
as described in the Work Directory and Platform Configuration section
later in this chapter.

User Configuration of the Built-In System
Your system administrator should have configured a master directo
on a drive or a network which is used for storing files under SCC. Us
need to connect to that network drive so it is accessible to them for
reading and writing.
© National Instruments Corporation 11-9 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

log

log

ith
u

u

iles

ot

urce
ll
tra
rnal

11Ch11.fm Page 10 Monday, May 19, 1997 5:23 PM
From the Project»Source Code Control»Local Configuration dialog
box, users should select the Built-in system. This displays a new dia
box that allows you to select the master directory. The dialog box
verifies the path you specify is valid and has been set up by the
Administrator for Source Code Control. You also can access this dia
box by pressing the Configure... button.

Work Directory and Platform Configuration
The local work directory is the directory in which all work you do is
stored. The idea of the work directory is that all users will end up w
the same set of subdirectories and files within that directory. As yo
change files within your directory and check them into Source Code
Control, other users can copy the files from Source Code Control to
their work directory.

The exact location for the work directory is completely up to you. Yo
should make sure that you have enough disk space on the drive
containing that directory, because it needs to be able to contain all f
that you work on that are under Source Code Control.

The Platform ring lets you select the platform that you are working
with. Unless your administrator has changed the setup, it should
correctly autodetect the platform you are using. In general you will n
need to change this setting. See the Multiplatform Issues section for
information on the how the platform information is used and a
description of situations when you might want to change it.

Managing Source Code Control Projects

Source Code Control Projects Overview
The G Source Code Control tools help you create projects under So
Code Control. A project is primarily a single VI hierarchy (VI plus a
or some of its subVIs). In addition, a SCC project also can contain ex
project related files such as specifications, shared libraries, and exte
subroutines.

The G SCC tools can maintain multiple projects. If you create two
projects that contain the same subVI, only one copy of that subVI is
maintained on the server.
Professional G Developers Toolkit Reference Manual 11-10 © National Instruments Corporation

Chapter 11 Source Code Control Tools

an

es

y.
u
u

 the

s
hat

t to
VIs

11Ch11.fm Page 11 Monday, May 19, 1997 5:23 PM
By creating a project based upon a VI hierarchy, the G SCC tools c
help you to keep the SCC project up to date. As you add files to or
remove files from your hierarchy, the G SCC tools notice the chang
and help you to update the project.

Some applications you develop might have more than one hierarch
For example, if you use the VI control VIs to dynamically load a VI, yo
have one hierarchy for the main set of VIs and another for the VI yo
load dynamically. You should create separate projects for each
hierarchy and then you can create a project group, as described in
Project Groups section, to make it more convenient to access the VI
hierarchies simultaneously.

You create and edit the contents of projects using the Project»Source
Code Control»Project dialog box.

Creating a Project
A Source Code Control project consists of a hierarchy of VIs (VI plu
all or some of its subVIs). To create a project, open the top level VI t
you want to add to SCC. Then, open the Project»Source Code
Control»Project dialog box and select the New Project button. From
the subsequent dialog box, select the top level VI for which you wan
create a project. The project contents listbox updates the list of sub
that the VI calls.
© National Instruments Corporation 11-11 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

d to

ry
rol.

r

CC.

u

11Ch11.fm Page 12 Monday, May 19, 1997 5:23 PM
If you select Save, the project is created and all VIs in the listbox are
added to SCC if they are not already part of SCC. As files are adde
Source Code Control, they are locked to prevent accidental
modification. When you want to modify a file that is under SCC, you
must check out the file (see the Checking Out Files section later in this
chapter).

If any files in your hierarchy are not present in your working directo
or are in an LLB, those files cannot be added to Source Code Cont

With the Extra Files button, you can add files that are not part of you
hierarchy to the project. You can use this to add project-related
documents such as proposals, specifications, and illustrations to S
You also can use this to add support files such as shared libraries
(DLLs) and external subroutines (.lsb files) that are not detected
normally as part of your VI hierarchy, but are necessary to run your
software. See the Adding Extra Files to a Project section for more
information on this option.

The Platforms and Exclude Dirs buttons are advanced options that yo
typically do not need to modify.
Professional G Developers Toolkit Reference Manual 11-12 © National Instruments Corporation

Chapter 11 Source Code Control Tools

ith
ht
ou

e as

e
lt the

ant
ed

lls

ct.

r
he

11Ch11.fm Page 13 Monday, May 19, 1997 5:23 PM
The Platforms button lets you work with platform-specific files. If your
application calls CINs or shared libraries (DLLs), you may end up w
files that are specific to a given operating system. With a DLL, it mig
be available under Windows but not on other operating systems. If y
write a CIN for multiple platforms, you will find that you need a
different variant of the VI containing the CIN for each platform. The
Platforms dialog box addresses both issues by letting you mark a fil
platform-specific and also letting you create variants of a file for
different platforms. See the Multiplatform Issues section for more
information on this option.

The Exclude Dirs button lets you edit a list of directories that should b
ignored as far as source code is concerned. For example, by defau
files in the vi.lib directory are not listed as candidates for SCC. In
general, you will not need to change this setting, although you may w
to add a directory of your own if you have specific files that don't ne
to be added to Source Code Control.

Updating a Project
As you develop your VIs, you will create new subVIs and remove ca
to subVIs. The integrated SCC tools make it easy to keep the SCC
project up to date.

To update the SCC project, first open the top level VI for your proje
Then, open the Project»Source Code Control»Project dialog box,
select the project and select the Edit Project button.

If any VIs have been added or removed from your VI hierarchy, the Edit
Project dialog box will prompt you whether you want to update the
project to reflect those changes. As always, the files must be in you
working directory and cannot be in LLBs unless they are in one of t
exclude directories for the project (by default, files in vi.lib are
excluded).

Removing Files from a Project
To remove files from a project, open the Project»Source Code
Control»Project dialog box, select the project and select the Edit
Project button. Then select the file(s) and press the Remove button or
double click on the file.
© National Instruments Corporation 11-13 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

ct
en
g

 as
yed

 that
art

r

.

11Ch11.fm Page 14 Monday, May 19, 1997 5:23 PM
When you remove VIs from a project, they remain listed in the proje
file list but they have an X next to them to indicate that they have be
removed. You can add the files back to the project by double clickin
on the file again (a check will appear next to the file).

Another way to remove files from the project is to use the Exclude
Directories dialog box and select the directory that contains the files
a directory to exclude. Files that are excluded in this fashion are gra
out in the project file list.

Notice that when you remove a file from a project, it is not removed
from Source Code Control. One reason that they are not removed is
files can be shared by multiple projects. Also, even files that are not p
of a project are retained in SCC because they may be important fo
historical reasons. To permanently delete a file, use the Delete File
option from the Project»Source Code Control»Advanced dialog box.

Adding Extra Files to a Project
In many cases, the work you develop consists of more than just VIs
You probably have specifications, proposals, and illustrations that
describe your project. You also can have support files like shared
libraries (DLLs) or external subroutines. The integrated SCC tools
support storing these extra, project related files as part of your SCC
projects.

To add extra files to your project, open the Project»Source Code
Control»Project dialog box, select the project and select the Edit
Project button. Then press the Extra Files button.
Professional G Developers Toolkit Reference Manual 11-14 © National Instruments Corporation

Chapter 11 Source Code Control Tools

hat
 the

ct

tra
 on
es

ate

ct
om

u

11Ch11.fm Page 15 Monday, May 19, 1997 5:23 PM
Add or remove extra files by pressing the Add… or Remove button.
Once you are finished, press Save to commit any changes you make.

Do not use the Edit Extra Files dialog box to add VIs to a project.
Instead, VIs should be added automatically if they are part of a
hierarchy. If you have a set of VIs that are not part of the project but t
you want to store in Source Code Control, create new project(s) for
additional VIs. If you want to be able to retrieve multiple projects
simultaneously as though they were a single project, create a Proje
Group.

Project Groups
Each SCC project consists of a VI, all or some of its subVIs, and ex
files associated with the project. Some development efforts you work
may consist of more than one top level VI. For example, if your VI us
the VI Control VIs to dynamically load and call VIs, the dynamically
called subVIs are not really a part of your hierarchy. In this case, cre
separate projects for each dynamically called VI.

An SCC project group is a collection of projects. You can use proje
groups to make it more convenient to retrieve and manipulate files fr
multiple projects.

To create a project group, first define the individual projects that yo
want it to contain. Then select Project»Source Code Control»Project
and press the New Project Group button.
© National Instruments Corporation 11-15 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

ber

oject

ch

se
.

11Ch11.fm Page 16 Monday, May 19, 1997 5:23 PM
The dialog box lets you enter a name for the group and select the
projects that the group contains. Project groups can contain any num
of projects and can contain references to other project groups.

Once you have created a project group, its name shows up as a pr
you can select when you use the Checkin, Checkout, Retrieve, or
Advanced dialog boxes.

Accessing Files

Retrieving Files
To copy files from the master directory to your working directory,
select Project»Source Code Control»Retrieve Files.

The dialog box lets you select a project (or project group) from whi
to retrieve files.

To retrieve a file, select it and press Get File(s). To retrieve multiple
files, shift click on items to select them and then press Get File(s). Since
the list can get long if you have a lot of files in your project, you can u
the Only list VIs with open panels checkbox to filter out unopened files
Professional G Developers Toolkit Reference Manual 11-16 © National Instruments Corporation

Chapter 11 Source Code Control Tools

ld
n

at
m.

 the
ted.

11Ch11.fm Page 17 Monday, May 19, 1997 5:23 PM
File Status
The dialog box automatically compares the local copy of files in the
project with the master copy that the SCC system maintains. It
categorizes the files into the following categories and indicates this
information in parentheses next to each file in the list.

• Local copy has changed—If the file is not checked out, you shou
either check the file out or replace the local copy with the versio
from the server. It is a bad practice to modify local files without
first checking them out.

• Server copy has changed—This generally means that another
developer has modified the VI.

• Local copy does not exist—Either the file is a file on the server th
you have never retrieved or you deleted it from your local syste
If you have intentionally deleted it and you want to update the
project, make sure to use the Project»Source Code
Control»Project dialog box to update the project file list.

• Server copy does not exist—Either the file has been deleted on
server by another developer or it is a new file that you have crea
If it is a new file that you created and you want to update the
project, make sure to use the Project»Source Code
Control»Project dialog box to update the project file list.
© National Instruments Corporation 11-17 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

gs

m

es

that
hat
se
e

11Ch11.fm Page 18 Monday, May 19, 1997 5:23 PM
File Properties
The File Properties button displays a dialog box that gives you a
summary of information about the file, including the projects it belon
to, the checkout status, and modification dates.

You can get more information about a file, including a file history, fro
the Project»Source Code Control»Advanced dialog box.

Checking Out Files
When you want to modify a file, first check the file out, which reserv
it so that nobody else can modify the file.

When you check out a file, if there is a newer version on the server,
version is copied down to your local system. It is then unlocked so t
you can edit the VI. While you have the file checked out, nobody el
can check the file out or modify it. This helps to ensure that only on
developer modifies a VI at a time.

To check files out, select Project»Source Code Control»Check Out
Files.
Professional G Developers Toolkit Reference Manual 11-18 © National Instruments Corporation

Chapter 11 Source Code Control Tools

ch
ll
ion

out
tes

ds
ur
ould

ave

re
he

 file
e
 to

to if

11Ch11.fm Page 19 Monday, May 19, 1997 5:23 PM
The dialog box lets you select a project (or project group) from whi
to check files out. When you check a file out, it is checked out for a
projects. When you subsequently check the file back in, the new vers
is available for all projects that contain the file.

The interface for checking files out is almost identical to that for
retrieving files. You cannot check files out that are already checked
to either you or another developer. If it is checked out, the list indica
the user name of the developer with the VI. If you need to check
multiple files out, shift click on items in the listbox to select the files
you want to work on and press Checkout File(s).

In general, it is a good idea to avoid checking files out for long perio
of time. Instead, you should try to make incremental changes to yo
files, and then when you are sure that they are in good shape, you sh
check them in. Whenever you check a file in, make sure that you h
tested it well enough that you know that you are not going to cause
problems for other developers. If you need to modify other VIs befo
you can check a specific VI in, check out the other VIs, make all of t
changes, and test the VIs before checking any of the VIs in.

If you need to make several changes to a VI, consider checking the
in between modifications and then check the file back out to start th
next modification. Not only does this allow other developers access
you changes, but it also gives you a checkpoint that you can return
you later decide that your subsequent changes were incorrect.
© National Instruments Corporation 11-19 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

ow
r

 you
ur

the

e.
s you
eed
ts

ked

 to
ent

11Ch11.fm Page 20 Monday, May 19, 1997 5:23 PM
Use the History Window to Document Changes
As you make modifications, it is a good idea to use the History wind
(accessible from the Windows menu for a VI) to make notes about you
changes. You can check a file out for several days, so the history
window helps you to remember the changes you have made. When
check the file back in, the SCC tools let you enter a description of yo
changes. By default, this text is the history text since you checked
file out.

The more detailed you are in making notes, the better off you will b
These notes can help if you need to make reports about the change
have made or if you later need to retrieve an old version and you n
to distinguish between two different versions. You can create repor
and access old versions using the Project»Source Code
Control»Advanced dialog box.

Checking In Files
When you are finished making changes to a file that you have chec
out already, you can use Project»Source Code Control»Check Files In
to copy your version into Source Code Control so that it is available
other users. The VI is locked automatically as it is checked in to prev
you or others from accidentally modifying the file without first
checking it out.
Professional G Developers Toolkit Reference Manual 11-20 © National Instruments Corporation

Chapter 11 Source Code Control Tools

u

the
ord

11Ch11.fm Page 21 Monday, May 19, 1997 5:23 PM
The interface for checking files in is very similar to that for checking
files out and for retrieving files. You only can check in a file if it is
checked out to you (your user name must be the same as when yo
checked out the file).

When you check in a file, you are prompted to enter a summary of
changes you have made. If you have used the history window to rec
changes, this dialog box initially contains the history text since you
checked the file out.
© National Instruments Corporation 11-21 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

on
are

log
o

sing

se
de

 for

t in
e
 and
ver

es,

11Ch11.fm Page 22 Monday, May 19, 1997 5:23 PM
You can edit this text if you want to either expand upon the informati
or remove unimportant information. When you change this text, you
not modifying the VI history. Instead, the modified text is stored in
Source Code Control with the file as part of a log of changes. This
is useful for report generation and can be helpful if you later need t
retrieve an old version and you need to distinguish between two
different versions. You can create reports and access old versions u
the Project»Source Code Control»Advanced dialog box.

SCC User Name
When you check files out or in or modify projects, the G SCC tools u
your LabVIEW or BridgeVIEW user name to access the Source Co
Control system. This user name can be changed using Edit»User Name.
Also, preferences in the Edit»Preferences dialog box under the History
page let you control whether to prompt for a User Name when you
launch LabVIEW or BridgeVIEW.

It is important that the user name be unique among your team. The
built-in SCC system does not check for a password, so it is possible
users to check files in or out as another developer if you do not use
unique names. The built-in system relies on a certain degree of trus
this area. If more security is important, consider using an alternativ
SCC system such as SourceSafe for storing files. With SourceSafe
other third-party tools you are prompted to enter a password whene
you access files or modify projects. See the Source Code Control
Configuration topic for more information on the built in system and
third-party systems.

Advanced Features

Most advanced features are accessed from the Project»Source Code
Control»Advanced dialog box. This dialog box contains features for
viewing all files under SCC and determining the projects those files
belong to, accessing older versions of files, permanently deleting fil
and creating reports.
Professional G Developers Toolkit Reference Manual 11-22 © National Instruments Corporation

Chapter 11 Source Code Control Tools

lly
file

u
 the

ea

11Ch11.fm Page 23 Monday, May 19, 1997 5:23 PM
Deleting Files from SCC
When you remove a file from a project, it is not removed automatica
from Source Code Control. The main reason for this is that while a
may not be needed currently, it is important historically in terms of
being able to understand the evolution of your software. Thus, if yo
later decide that you need to retrieve an older version of the project,
file is still present in SCC.

If you decide that you do not need a file, you can delete it using the
Project»Source Code Control»Advanced dialog box. From the dialog
box, select the files you want to delete and press the Delete File button.

Use caution in deleting files. In addition to removing the current
version, it also deletes all previous versions of the file that the SCC
system maintains and the history log for that file. Also, it is a good id
to enable the Display Projects option in the advanced dialog box to
verify that the files you are deleting are not used currently by any
projects before you delete the file.
© National Instruments Corporation 11-23 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

 the
cts,

ded

s

I,
ss
ck
ch
le’s
y
e to
ore

ntrol
de

ou

 to
el
ater

 of

11Ch11.fm Page 24 Monday, May 19, 1997 5:23 PM
SCC File History
Every Source Code Control transaction that modifies the contents of
SCC system is recorded. When you create projects, add files to proje
check files in and out, or delete files or projects, that information is
logged, and the comments you enter when you check a file in are ad
to the log for a file.

To view the SCC history information for a file, use the File History
button in the Project»Source Code Control»Advanced dialog box. It
displays a scrolling list of the SCC history for the file, including date
and names for every person that modified the file.

It is important to understand the difference between the SCC File
History and the VI history that you modify with a VI history window.
The VI history window can be used as a place to write notes about
changes to a VI as you make them. This VI history is a part of the V
so if you give the VI to someone, the VI history is still present (unle
you reset it using an option from the history window). When you che
a file in, regardless of whether it is a VI or some other document su
as a specification, you are given a chance to make an entry in the fi
SCC file history. For VIs, the default text for this entry is the VI histor
text since you checked the file out. However, you are given a chanc
change this entry so that the SCC history entry is more detailed or m
succinct. This SCC file history information is maintained within the
SCC system and does not become a part of the VI.

The dialog box appearance is dependent upon the Source Code Co
system you use (either the built-in system or a third-party source co
system). At a minimum, it lets you scroll through a listing of
information about each file. In addition, for most systems it should
allow you to access previous versions of files (see Accessing Previous
Versions of Files for more information on this feature). Also, the built-in
system (and some third-party systems such as SourceSafe) gives y
the option of labeling the current version of a file so that it is easier
recognize if you later want to retrieve it; for example, you might lab
a file as beta so that you can easily retrieve that checkpoint version l
on. See the Labeling Versions of Files for Easy Retrieval section for more
information.

It is important that you be detailed in entering comments when you
check files in (and if you use the history window) because that
information can help you to subsequently understand the evolution
Professional G Developers Toolkit Reference Manual 11-24 © National Instruments Corporation

Chapter 11 Source Code Control Tools

 in

sy

ave

.

d

e
ts

ts
t
t

the
rol

 in
h

ou
ent
at

11Ch11.fm Page 25 Monday, May 19, 1997 5:23 PM
your software and also is extremely helpful if you need to determine
which version a problem was introduced.

If you want to view a summary of transactions for multiple files, an ea
way is to use the System History button instead of the File History
button (see the System History section for more details). Also, if you use
the report generation feature of the Advanced dialog box, you can s
the System and File History for files in a Project (see the Creating
Reports section for information on the options available in this area)

System History
The System History dialog box lets you view a brief summary of
transactions affecting the Source Code Control system. It lists any
transaction that modified the contents of projects, created or delete
files, or checked files in.

As with the File History dialog box, the System History dialog box
appearance depends upon the Source Code Control system you us
(either the built-in system or a third-party system). At a minimum, it le
you scroll through a listing of transactions. In addition, for most
systems it allows you to label the current version of all files in projec
so that they can be easily retrieved later on; for example, you migh
apply a label of beta to all files in a project (or multiple projects) so tha
you can easily retrieve those versions later on. See the Labeling Versions
of Files for Easy Retrieval section for more information.

Master File List (sccfiles.lst)
If you are using a third-party system, it is helpful to understand how
system history information is maintained. The G Source Code Cont
tools maintain a binary file named sccfiles.lst that describes all of
the projects and files in Source Code Control. Every time you check
or check out a file, or you modify a project, this file is modified. As wit
all other files in SCC, the sccfiles.lst file has history. However,
rather than prompting you for comments or using the full comments y
apply to each file, the G SCC tools automatically apply a brief comm
for each transaction you make that describes the files or projects th
were modified. For projects, it indicates in which way they were
modified (files added or removed).

If you are using a third-party SCC system, System History lets the
third-party SCC system display the history for this sccfiles.lst in
the manner in which it normally displays history information.
© National Instruments Corporation 11-25 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

u

me
out

 a
l if

er so

he
r
ts).
ns
ou
ns

f this
ch

ry
he

uct

11Ch11.fm Page 26 Monday, May 19, 1997 5:23 PM
Consequently, the dialog box you see might give you options for
retrieving older versions of the sccfiles.lst or for labeling the file. Yo
should not perform these operations on this file. If you accidentally
modify the version of this file on the sever, the G SCC tools can beco
confused about the files under Source Code Control and the check
state of those files.

Accessing Previous Versions of Files
A useful feature of most SCC systems is that they automatically
maintain previous versions of files. This is helpful if you ever make
mistake and need to recall an older version of a file. It is also usefu
you give a version to a customer, continue development, and
subsequently need to retrieve the same version you sent the custom
that you can reproduce the system he or she has.

Built-In System
The built-in SCC system supports maintaining previous versions of
files. The System Administrator can enable this feature, but he or s
may choose to disable it for disk storage reasons (maintaining olde
versions of files can dramatically increase your storage requiremen
In addition, the administrator can configure it so that it only maintai
a limited number of previous versions of each file. In this case, as y
check a newer version of a file in, a fixed number of previous versio
will be maintained.

With the built-in system, if you label versions of files, the labeled
versions are not automatically deleted and are not counted as part o
System Administrator limit. Labeled versions are maintained until su
time as you choose to delete them.

With the built-in system, you can access previous versions of files from
the File History and the System History dialog boxes. The File Histo
dialog box allows you to retrieve a previous version of a single file. T
System History dialog box allows you to scan the system for all
versions of a files with a specific label and it allows you to retrieve
those versions. This can be useful in taking a snapshot of your prod
that you can subsequently retrieve very easily (for example you can
label the current version of all files in a project as rel1 for the first
release).
Professional G Developers Toolkit Reference Manual 11-26 © National Instruments Corporation

Chapter 11 Source Code Control Tools

s
on

ains

 The
o

ing
e of
ny
file
e
x.

ion
ls

 is
rty

ple
can
iles
em

ith

ls
es

11Ch11.fm Page 27 Monday, May 19, 1997 5:23 PM
Third-Party Systems
Most third-party systems including SourceSafe offer similar feature
for maintaining previous versions of files and labeling files. The opti
might be configurable; consult the documentation for the third-party
SCC system to determine the options. By default, SourceSafe maint
history for files.

Labeling Versions of Files for Easy Retrieval
With the built-in SCC system, the File History button in the
Project»Source Code Control»Advanced dialog box lets you retrieve
older versions of files. By default, however, the names you see are
based upon the older version number and the version creation date.
File History dialog box lets you optionally label the current version s
that it is easier to recognize if you later need to retrieve it. Also, label
a file ensures that it is not automatically deleted as it gets older (on
the Administrator options for the built-in system is to specify how ma
older versions of a file should be maintained). Labeled versions of a
are not deleted unless you delete them yourself, either from the Fil
History dialog box or by deleting the file from the Advanced dialog bo

If you are using a third-party SCC system, you probably have the opt
of labeling files as well, but you might have to do it using the SCC too
that they provide. Also, notice that with third-party tools the way in
which previous versions are maintained and when they get deleted
entirely configured using the tools that are provided with the third-pa
SCC tools.

If you are using the built-in SCC system and you need to label multi
files, you can use the File History dialog box on each one, but that
be a bit tedious. Instead, if you want to take a snapshot of all of the f
in a project, applying the same label to all of the files, use the Syst
History dialog box. It has an option that lets you label all files in a
project with the same label. It also has an option for retrieving files w
the same label.

Creating Reports
A very important feature of any SCC tool is the ability to generate
reports describing system and file activity. This is because SCC too
should help you not only to maintain files but also to track the chang
that happen to those files.
© National Instruments Corporation 11-27 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

and
rol.
g a

 you

.

s
r

e

rol,

11Ch11.fm Page 28 Monday, May 19, 1997 5:23 PM
The Reports button in the Project»Source Code Control»Advanced
dialog box lets you create basic reports describing file transactions
information about the projects maintained under Source Code Cont
These reports are saved to a text file that you can edit or print usin
word processor.

The options in the Reports dialog box depend upon the SCC system
are using (built-in or third-party).

Built-In System
If you are using the built-in system, you get the following dialog box

The System file listing option describes all files maintained in Source
Code Control. For each file, it lists the current file version and the
projects that those files belong to.

The Summary of system transactions option gives the same
information as in the System History dialog box. It lists all checkout
and checkins, project creations, file creations and file deletions. Fo
each transaction, it includes the user name, the date, and a brief
summary of the changes.

The Project file listing option lists only the files that are members of th
selected project.

The File histories option lists the same information as in the File
History dialog box for each file in the selected project. It lists
information about when the file was first added to Source Code Cont
Professional G Developers Toolkit Reference Manual 11-28 © National Instruments Corporation

Chapter 11 Source Code Control Tools

the

e

s

 of

, it
es of
le

ot

nd
>,
e).

es
cter

11Ch11.fm Page 29 Monday, May 19, 1997 5:23 PM
plus all information about subsequent changes to the file including
user name, the date, and a brief summary of the changes.

Microsoft Visual SourceSafe
With Visual SourceSafe, the file listings can be generated from the
Reports dialog box. Transaction listings and other reports have to b
done from the Visual SourceSafe environment. Remember that the
system history can be viewed by looking at the history of the
sccfiles.lst file (see the description of this file in the System History
section).

Multiplatform Issues

Cross Platform Source Code Control
Unlike most Source Code Control tools, the built-in SCC system let
you access files from all the platforms that LabVIEW and BridgeVIEW
support except Windows 3.1 (see the Using Individual Files Instead
LLBs topic for an explanation).

Once the administrator has set up the Source Code Control system
can be accessed from any supported platform. There are some issu
which you should be aware if you are developing VIs on or for multip
platforms.

Filename Limitations
Macintosh, Windows 95 and NT, and Unix systems each have
restrictions about filenames and paths that you need to be cautious
about if you plan to support multiplatform development.

• Macintosh filenames are limited to 31 characters in length and
cannot contain the ‘:’ character. Paths are not limited in length.

• Unix filenames are limited to 255 characters in length and cann
contain the ‘/’ character. Paths are not limited in length.

• Windows 95 filenames are limited to 255 characters in length a
cannot contain any of the following characters: \, :, /, *, ?, ", <,
and |. Paths are limited to 255 characters (including the filenam
Windows NT supports both FAT and NTFS file systems. FAT
filename restrictions are the same as Windows 95. NTFS filenam
are limited to 255 characters in length and has the same chara
limitations as FAT. NTFS paths are not limited in length.
© National Instruments Corporation 11-29 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

 *,
ss.

em
ted

n

e

EW

rol
in

DE
 the
to

n
d

ly

s.

11Ch11.fm Page 30 Monday, May 19, 1997 5:23 PM
Consequently, for maximum portability you should avoid using :, \, /,
?, ", <, >, and | in filenames and limit filenames to 31 characters or le
Also, because of the path length restrictions under the FAT file syst
of Windows 95 and NT, you should avoid paths that are deeply nes
(longer than 255 characters). The File Manager tool, described in
Chapter 10, File Manager Tool, can scan a set of directories or VI
libraries for invalid names.

Platform-Dependent SCC Files
LabVIEW and BridgeVIEW are available for a wide variety of
computing platforms. Windows 95 and Power Macintosh are two
examples of platforms for which LabVIEW is available. Most VIs ca
be opened on any platform LabVIEW and BridgeVIEW support and
will run without modification. The G Source Code Control Tools can b
used to share code among developers on any platform where LabVI
or BridgeVIEW is available.

In most cases, you will probably want all files in Source Code Cont
to be available for all platforms. In some cases you may have files
your system that are platform-specific.

The following are cases that might involve platform-specific issues.

• VIs that take advantage of platform-specific features such as D
can be taken to a platform that does not support the feature, but
VI will be broken on that platform. In this case, you might prefer
only have the file come down on the platforms that support the
feature.

• If you write any VIs that contain CINs, you need a different versio
of the VI for each platform because CINs contain code compile
with platform-specific compilers.

• If your application uses shared libraries (DLLs), the libraries app
only to specific platforms. The VIs that call the libraries are
platform independent assuming that you have a corresponding
library for each platform

The G Source Code Control tools give you the flexibility of marking
files as platform-specific and creating variants for different platform
Professional G Developers Toolkit Reference Manual 11-30 © National Instruments Corporation

Chapter 11 Source Code Control Tools

 is

the

ss

ry,

e

11Ch11.fm Page 31 Monday, May 19, 1997 5:23 PM
Platform-Specific Files
From the Source Code Control»Project dialog box, select a project that
contains the file you want to modify and press Edit Project . Then, from
the Edit Project File List dialog box, select the Platforms... button to
access a dialog box that lets you mark the platforms for which a file
available.

The platforms selected in the right list determine the platforms that
file is available on.

Each user of the G SCC tools will have configured the platform for
which they want files using the Source Code Control»Local
Configuration dialog box. Assuming you do not modify this list, the
Configuration dialog box should have automatically detected your
platform correctly.

Variants of a File for Different Platforms
To create a variant of a file for another platform, go to the Source Code
Control»Project dialog box, select a project that contains the file, pre
the Edit Project button, and press the Platforms... button. To create a
new variant, press the Create a Variation... button. Then choose the
new variant and select the platforms to which it applies. If necessa
modify the existing variants to ensure that there is no overlap (the
dialog box does not allow you to apply multiple variants to the sam
platform).
© National Instruments Corporation 11-31 Professional G Developers Toolkit Reference Manual

Chapter 11 Source Code Control Tools

m.
r
e
ut

e

is
od
e
.

 list

er

11Ch11.fm Page 32 Monday, May 19, 1997 5:23 PM
Retrieving Files for a Different Platform
In some cases, you may need to retrieve files for a different platfor
For example, if you create a CIN you will have different versions fo
each platform. Suppose you have a VI that calls a CIN, and at som
point you decide to add a parameter to the CIN. You will first check o
the VI on a platform, modify the CIN code, recompile and reload th
CIN, and then check the VI back in. You might attempt to make the
same modifications to the variant of the VI for each platform, but th
would require a lot of work and is error prone. Instead, a better meth
is to check out the VI on each platform, replace it with the VI with th
correct block diagram, and then recompile and then reload the CIN
Afterwards, you can check the resulting VI in as the variant for the
current platform.

The Checkin, Checkout, and Retrieve Files dialog boxes restrict the
to the current platform. To change the platform, select Source Code
Control»Local Configuration and then choose the platform for which
you wish to retrieve files. After you have retrieved the files, rememb
to go back and reset the platform to its original value.
Professional G Developers Toolkit Reference Manual 11-32 © National Instruments Corporation

© National Instruments Corporation A-1 Professional G Developers To
Appendix

A
References
ut

at

es,
e

cts

f

This appendix provides a list of references for further information abo
software engineering concepts.

LabVIEW Data Acquisition VI Reference Manual. A useful sample of
quality documentation for libraries of VIs.

LabVIEW Instrument I/O Reference Manual. Detailed information for
developers of instrument drivers.

Dataflow Programming with LabVIEW. National Instruments
Application Note. A set of perspectives on dataflow programming th
shows how LabVIEW compares with classical dataflow graphs,
equations, and block diagrams.

Visual Programming Using Structured Data Flow. Jeffrey Kodosky,
J. MacCrisken, G. Rymar, Proc. IEEE Workshop on Visual Languag
1991. (Also available from National Instruments.) Description of som
of the theory behind the graphical programming paradigm of
LabVIEW.

LabVIEW Graphical Programming—Practical Applications in
Instrumentation and Control. Gary W. Johnson, McGraw-Hill Inc.,
1994, ISBN 0-07-032719-4. An excellent overview of how to apply
LabVIEW to real-world problems.

LabVIEW Technical Resource. Editor: Lynda P. Gruggett, LTR
Publishing, phone (214) 827-9931, fax (214) 827-9932. A quarterly
newsletter and disk of VIs featuring technical articles about all aspe
of LabVIEW.

Rapid Development. Steve McConnell, Microsoft Press. Explanation o
software engineering practices in a very down-to-earth fashion with
many examples and practical suggestions.

Microsoft Secrets. Michael A. Cusumano and Richard W. Selby, Free
Press, 1995, ISBN 0-02-874048-3. In-depth examination of the
programming practices Microsoft uses. Whether or not you are
olkit Reference Manual

Appendix A References

f
ood

hat
er
ut

N:

ook

t.

1 in

,
ion
interested in Microsoft, this book contains interesting discussions o
what they have done right and what they have done wrong. Has a g
discussion of team organization, scheduling, and milestones.

Dynamics of Software Development. Jim McCarthy, Microsoft Press,
1995, ISBN 1-55615-823-8. Another look at what has worked and w
has not for developers at Microsoft. This book is written by a develop
from Microsoft and contains numerous real-world stories that help p
problems and solutions in focus.

Software Engineering—A Practitioner’s Approach. Roger S. Pressman,
McGraw-Hill, 1992, ISBN 0-07-050814-3. A detailed survey of
software engineering techniques with descriptions of estimation
techniques, testing approaches, and quality control techniques.

Handbook of Walkthroughs, Inspections, and Technical Reviews:
Evaluating Programs, Projects, and Products. Daniel P. Freedman and
Gerald M. Weinberg, Dorset House Publishing Co., Inc., 1990, ISB
9-932633-19-6. An excellent, down to earth discussion of how to
conduct design and code reviews with many examples of things to l
for and the best practices to follow during a review.

ISO 9000.3: A Tool for Software Product and Process Improvemen
Raymond Kehoe and Alka Jarvis, Springer-Verlag New York, Inc.,
1996, ISBN 0-387-94568-7. Describes what is expected by ISO 900
conjunction with ISO 9000.3 and provides templates for
documentation.

Software Engineering Economics. Barry W. Boehm, Prentice Hall,
1981, ISBN 0-13-822122-7. Description of the delphi and COCOMO
estimation techniques.

Software Engineering. Edited by Merlin Dorfman and Richard Thayer
IEEE Computer Science Press, 1996, ISBN 0-8186-7609-4. Collect
of articles on a variety of software engineering topics, including a
discussion of the spiral lifecycle model by Barry W. Boehm.
Professional G Developers Toolkit Reference Manual A-2 © National Instruments Corporation

© National Instruments Corporation B-1 Professional G Developers To
Appendix

B
Customer Communication
ssary
ct
m and
swer

ms to
vice,
are
ms
upport

n of
an also
ctions

ll

For your convenience, this appendix contains forms to help you gather the information nece
to help us solve your technical problems and a form you can use to comment on the produ
documentation. When you contact us, we need the information on the Technical Support For
the configuration form, if your manual contains one, about your system configuration to an
your questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone syste
quickly provide the information you need. Our electronic services include a bulletin board ser
an FTP site, a fax-on-demand system, and e-mail support. If you have a hardware or softw
problem, first try the electronic support systems. If the information available on these syste
does not answer your questions, we offer fax and telephone support through our technical s
centers, which are staffed by applications engineers.

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collectio
files and documents to answer most common customer questions. From these sites, you c
download the latest instrument drivers, updates, and example programs. For recorded instru
on how to use the bulletin board and FTP services and for BBS automated information, ca
(512) 795-6990. You can access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files
and documents are located in the /support directories.

Bulletin Board Support

FTP Support
olkit Reference Manual

 on a
phone

-mail
number

nical
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents
wide range of technical information. You can access Fax-on-Demand from a touch-tone tele
at (512) 418-1111.

You can submit technical support questions to the applications engineering team through e
at the Internet address listed below. Remember to include your name, address, and phone
so we can contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the tech
support number for your country. If there is no National Instruments office in your country,
contact the source from which you purchased your software to obtain support.

Telephone Fax

Australia 02 9874 4100 02 9874 4455
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 527 2321 09 502 2930
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Fax-on-Demand Support

E-Mail Support (currently U.S. only�

e, and
g this

blem,
ary.

__

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardwar
use the completed copy of this form as a reference for your current configuration. Completin
form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this pro
include the configuration forms from their user manuals. Include additional pages if necess

Name __

Company ___

Address __

Fax (___)___________________ Phone (___) ____________________________________

Computer brand ________________ Model ________________ Processor ______________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter_________________________

Mouse ___yes ___no Other adapters installed___________________________________

Hard disk capacity _____MB Brand __

Instruments used ___

National Instruments hardware product model__________ Revision ____________________

Configuration ___

National Instruments software product __________________________ Version __________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem:__

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our
products. This information helps us provide quality products to meet your needs.

Title: Professional G Developers Toolkit Reference Manual

Edition Date: January 1997

Part Number: 321393A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

Phone (___)__________________________ Fax (___)_____________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1 Professional G Developers To
Glossary
A

API Appli cation Programming Interface. The programming interface
for controlli ng some software packages, such as Microsoft Visual
SourceSafe.

B

black box testing A form of testing where a module is tested without knowing how
the module is implemented. The module is treated as if it were a
black box that you cannot look inside. Instead, you generate tests
that verify that the module behaves the way that it is supposed to
according to the requirements specifi cation.

C

CIN See Code Interface Node.

Capabilit y Maturity A model for judging the maturity of the processes of an
Model (CMM) organization and for identif ying the key practices that are required

to increase the maturity of these processes. The Software CMM
(SW-CMM) has become a de facto standard for assessing and
improving software processes. Through the SW-CMM, the
Software Engineering Institute and software development
community have put in place an effective means for modeli ng,
defining, and measuring the maturity of the processes used by
software professionals.

Prefix Meaning Value

m- milli- 10–3

µ- micro- 10–6

n- nano- 10–9
olkit Reference Manual

Glossary
COCOMO estimation COnstructive COst MOdel. A formula-based estimation method for
converting software size estimates to estimated development time.

code and fix model A lif ecycle model that involves developing code with littl e or no
planning, fixing problems as they arise.

Code Interface Node A function in G that all ows it to call compil ed subroutines from
other languages, such as C.

confi guration management A mechanism for controlli ng changes to source code, documents,
and other material that make up a product. During software
development, Source Code Control is a form of confi guration
management—changes only occur through the Source Code
Control mechanism. I t is also common to implement release
configuration management, to ensure that a particular release of
software can be rebuilt , if necessary. This impli es archival
development of tools, source code, and so on.

F

Function-Point Estimation A formula-based estimation method applied to a category
breakdown of project requirements.

I

integration testing Integration testing assures that individual components work
together correctly. Such testing may uncover, for example, a
misunderstanding of the interface between modules.

L

lif ecycle model A model for software development, including steps to foll ow from
the initi al concept through the release, maintenance, and upgrading
of the software.

LLB LabVIEW VI Library.

LOC Lines of Code. See Source Lines of Code.
Professional G Developers Toolkit Reference Manual G-2 © National Instruments Corporation

Glossary

o

d
llel
,

roject.
cost
nt.
 for
bly

nd
cy.

nly
t
e,
P

prototype A simple, quick implementation of a particular task. It is used t
demonstrate that the design has the potential to work. The
prototype usually has missing features and might have design
flaws. In general, prototypes should be thrown away, and the
feature should be reimplemented for the final version.

R

race condition Race conditions occur when one block diagram reads from an
writes to a global variable, and there is the potential that a para
block diagram attempts to manipulate the same global variable
resulting in loss of data.

S

Source Lines of Code The measure of the number of lines of code that make up a p
(SLOC) It is used in some organizations to measure the complexity and

of a project. How the lines are counted is organization-depende
Some organizations do not count blank lines and comment lines,
example. Some count C lines; some count only the final assem
language lines.

SEI Software Engineering Institute, a federally funded research and
development center chartered to address software engineering
technology. The SEI is located at Carnegie Mellon University, a
is sponsored by the Defense Advanced Research Projects Agen
See http://www.sei.cmu.edu .

spiral model A lifecycle model that emphasizes risk management through a
series of iterations in which risks are identified, evaluated, and
addressed.

system testing After integration testing is complete, system testing begins.
System testing assures that all the individual components not o
function correctly together, but that they comprise a product tha
meets the intended requirements. Performance, resource usag
and other problems are often uncovered at this stage.
© National Instruments Corporation G-3 Professional G Developers Toolkit Reference Manual

Glossary

the

es,
ing

ke
e

U

unit testing Testing only a single component of a system, in isolation from
rest of the system. Unit testing occurs before the module is
incorporated into the rest of the system.

W

waterfall model A lifecycle model that consists of several non-overlapping stag
beginning with the software concept and continuing through test
and maintenance.

white box testing Unlike black box testing, white box testing creates tests that ta
into account the particular implementation of the module. Whit
box testing is used, for example, to verify that all the paths of
execution of the module have been exercised.

wideband delphi estimation Wideband delphi is a group estimation of techniques used to
estimate the amount of effort a particular project will take.
Professional G Developers Toolkit Reference Manual G-4 © National Instruments Corporation

© National Instruments Corporation I-1 Professional G Developers Too
Index
A
Administration. See Source Code Control tools.
alpha testing, 3-9 to 3-10
attribute nodes, 7-11

B
beta testing, 3-9 to 3-10
bibliography, A-1 to A-2
black box testing, 3-6
block diagram

statistics, 8-3 to 8-4
style considerations, 7-17 to 7-25

adding common threads, 7-19 to 7-20
checklist, 7-29
Code Interface Nodes (CINs), 7-25
data dependency, 7-19
error checking, 7-22 to 7-23
execution sequence, 7-19 to 7-21
labeling, 7-18 to 7-19
left-to-right layouts, 7-19
missing dependencies, 7-21
optimization, 7-24
sequence structures, 7-20 to 7-21
sizing and positioning, 7-23 to 7-24
wiring etiquette, 7-17 to 7-18

top-down design, 4-2 to 4-3
bottom-up design, 4-6 to 4-8
BridgeVIEW software, 1-1
bulletin board support, B-1

C
Capability Maturity Model (CMM) standards,

3-15 to 3-16

changes. See configuration management; Source
Code Control tools.

CINs
CIN/shared library statistics, 8-4
description contents, 7-25
source code, 7-25

CMM (Capability Maturity Model) standards,
3-15 to 3-16

COCOMO (Constructive Cost Model)
estimation, 5-6

code and fix model, 2-5
Code Interface Nodes (CINs). See CINs.
code walkthroughs, 3-12. See also design

reviews.
coercion of invalid values, 7-10
color, style guidelines for, 7-5
common input/output terminal pairs,

7-19 to 7-20
common operations, identifying, 4-11 to 4-12
configuration management, 3-2 to 3-5. See also

Source Code Control tools.
change control, 3-4 to 3-5
definition, 3-2
managing project-related files, 3-3
retrieving old versions of files, 3-3 to 3-4
source code control, 3-2 to 3-3
tracking changes, 3-4

connector panes, style considerations,
7-14 to 7-15

consistency of style. See style guidelines.
Constructive Cost Model (COCOMO)

estimation, 5-6
control descriptions, as documentation, 6-6
lkit Reference Manual

Index
controls and indicators
default values, ranges, and coercion,

7-10 to 7-11
indicator descriptions, as

documentation, 6-6
local variables for consistent values, 7-12
style considerations, 7-8 to 7-12

attribute nodes, 7-11
default values, ranges, and coercion,

7-10 to 7-11
descriptions, 7-8
enumerations vs. rings, 7-9 to 7-10
key navigation, 7-11 to 7-12
labels, 7-8 to 7-9
local variables, 7-12
text styles, 7-5

cross-platform considerations.
See multiplatform considerations.

custom controls and graphics, 7-6 to 7-7
customer communication, xvi, B-1 to B-2

D
data dependency, 7-19

missing dependencies, 7-21
default values for controls, 7-10 to 7-11
design-related documentation, 6-1 to 6-2
design reviews, 3-11. See also code

walkthroughs.
design techniques, 4-1 to 4-9. See also

development models.
bottom-up design, 4-6 to 4-8
data acquisition system (example),

4-4 to 4-6
defining requirements for application,

4-1 to 4-2
front panel prototyping, 4-10
identifying common operations,

4-11 to 4-12
instrument driver (example), 4-7 to 4-8
multiple developer considerations, 4-9
performance benchmarking, 4-11
top-down design, 4-2 to 4-6

development models, 2-1 to 2-12. See also
design techniques; prototyping.

common pitfalls, 2-1 to 2-4
lifecycle models, 2-4 to 2-12

code and fix model, 2-5
definition, 2-4
G prototyping methods, 2-9
modified waterfall model, 2-8
prototyping, 2-8 to 2-9
spiral model, 2-10 to 2-12
waterfall model, 2-5 to 2-8

directories
converting LLBs to directories,

10-1 to 10-2
naming, 7-2
style considerations, 7-2

documentation for Professional G
Developer's Toolkit

conventions used in manual, xv
organization of manual, xiii- xiv
references, A-1 to A-2
related documentation, xvi

documentation of applications, 6-1 to 6-6
BridgeVIEW and LabVIEW features, 6-2
design-related documentation, 6-1 to 6-2
help files, 6-4 to 6-5
overview, 6-1
Print Hierarchy tool, 9-1 to 9-2
user documentation, 6-2 to 6-4

application documentation,
6-3 to 6-4

library of subVIs, 6-2 to 6-3
VI and control descriptions, 6-5 to 6-6

control and indicator
descriptions, 6-6

self-documenting front panels,
6-5 to 6-6

VI description, 6-5

E
e-mail support, B-2
Edit Platform List, 11-8 to 11-9
Professional G Developers Toolkit Reference Manual I-2 © National Instruments Corporation

Index
effort estimation, 5-4 to 5-6
COCOMO estimation, 5-6
function point estimation, 5-5 to 5-6
wideband Delphi estimation, 5-4 to 5-5

electronic support services, B-1 to B-2
enumerations vs. rings, 7-9 to 7-10
error checking, 7-22 to 7-23
estimation, 5-1 to 5-6

COCOMO estimation, 5-6
feature creep, 5-1
function point estimation, 5-5 to 5-6
lines of code/number of nodes, 5-2 to 5-3
mapping estimates to schedules,

5-6 to 5-7
of effort, 5-4 to 5-6
overview, 5-1 to 5-2
problems with size-based metrics,

5-3 to 5-4
wideband Delphi estimation, 5-4 to 5-5

execution sequence, 7-19 to 7-21
adding common threads, 7-19 to 7-20
data dependency, 7-19
left-to-right layouts, 7-19
missing dependencies, 7-21
sequence structures, 7-20 to 7-21

F
Fax-on-Demand support, B-2
FDA (U.S. Food & Drug Administration)

standards, 3-14
feature creep, 5-1
fil e management. See Source Code Control

tools.
File Manager tool, 10-1 to 10-2
fil ename limitations, on various platforms,

11-29 to 11-30
fonts, style guidelines, 7-5
Food & Drug Administration (FDA)

standards, 3-14
front panels

self-documenting, 6-5 to 6-6
style checklist, 7-27 to 7-28

style considerations, 7-4 to 7-8
color, 7-6
consistency, 7-4
graphics and custom controls,

7-6 to 7-8
layout, 7-7
sizing and positioning, 7-8
text, 7-5

FTP support, B-1
function point estimation, 5-5 to 5-6

G
G Developers Toolkit. See Professional G

Developers Toolkit.
G style guide. See style guideli nes.
global/local statistics, 8-4
graphics and custom controls, 7-6 to 7-7

H
help files, creating, 6-4 to 6-5
hierarchical organization of fi les, 7-1 to 7-4

directories (folders), 7-1 to 7-2
naming VIs, VI l ibraries, and directories,

7-1 to 7-2
VI libraries, 7-3 to 7-4

History window, 6-2, 11-20
HP-UX installation, 1-3

I
icons, style considerations, 7-15 to 7-16
IEEE (Institute of Electrical and Electronic

Engineers) standards, 3-16 to 3-17
indicators. See controls and indicators.
installation, 1-2 to 1-3

HP-UX, 1-3
Macintosh and Power Macintosh, 1-2
SPARCstation, 1-3
Windows 95 and NT, 1-2

Institute of Electrical and Electronic Engineers
(IEEE) standards, 3-16 to 3-17
© National Instruments Corporation I-3 Professional G Developers Toolkit Reference Manual

Index
integration testing, 3-8 to 3-9
International Organization for Standards

(ISO) 9000, 3-13 to 3-14

K
keyboard navigation, 7-11 to 7-12

L
labels

block diagrams, 7-18 to 7-19
font usage, 7-5
style guidelines for, 7-8 to 7-9

LabVIEW software version required, 1-1
left-to-right layouts, 7-19
libraries. See VI l ibraries.
lifecycle models, 2-4 to 2-12

code and fix model, 2-5
definition, 2-4
G prototyping methods, 2-9
modified waterfall model, 2-8
prototyping, 2-8 to 2-9
spiral model, 2-10 to 2-12
waterfall model, 2-5 to 2-8

lines of code. See also size-based metrics.
in estimation, 5-2 to 5-3

LLBs. See VI l ibraries.
local configuration. See Source Code Control

tools.
local variables

global/local statistics, 8-4
using for consistent values, 7-12

M
Macintosh and Power Macintosh

installation, 1-2
manual. See documentation for Professional

G Developer's Toolkit.
master file list (sccfiles.lst), 11-25 to 11-26
metrics. See size-based metrics; VI Metrics

tool.

Microsoft Visual SourceSafe
for Windows 95/NT

accessing previous versions of fi les,
11-27

administration, 11-6
overview, 11-5
report generation, 11-29
user configuration, 11-9

milestones
responding to missed milestones, 5-8
tracking schedules using milestones,

5-7 to 5-8
missing dependencies, 7-21
modified waterfall model, 2-8
multiplatform considerations, 11-29 to 11-32

cross platform source code control, 11-29
Edit Platform List, 11-8 to 11-9
fil ename limitations, 11-29 to 11-30
platform-dependent SCC files, 11-30
platform-specific fi les, 11-31
retrieving fi les for different

platforms, 11-32
variants of fi les for different

platforms, 11-31
work directory and platform

configuration, 11-10

N
naming VIs, VI libraries, and directories,

7-1 to 7-2
nodes. See also size-based metrics.

number of, 5-3, 8-2

O
optimizing programs, 7-24

P
performance benchmarking, 4-11
platforms. See multiplatform considerations.
postmortem evaluation, 3-13
Professional G Developers Toolkit Reference Manual I-4 © National Instruments Corporation

Index
Print documentation dialog box, 6-2
Print Hierarchy tool, 6-2, 9-1 to 9-2
Professional G Developers Toolkit

features, 1-5
installation, 1-2 to 1-3
overview, 1-4
required system configuration, 1-1

project management. See scheduling and
project tracking; Source Code Control tools.

prototyping. See also design techniques.
development model, 2-8 to 2-9
front panel prototyping, 4-10
G prototyping methods, 2-9

Q
quality control, 3-1 to 3-17

code walkthroughs, 3-12
configuration management, 3-2 to 3-5

change control, 3-4 to 3-5
managing project-related files, 3-3
retrieving old versions of files,

3-3 to 3-4
source code control, 3-2 to 3-3
tracking changes, 3-4

design reviews, 3-11
postmortem evaluation, 3-13
requirements, 3-1 to 3-2
software quali ty standards, 3-13 to 3-17

CMM, 3-15 to 3-16
FDA standards, 3-14
IEEE, 3-16 to 3-17
ISO 9000, 3-13 to 3-14

style guidelines, 3-10 to 3-11
testing guideli nes, 3-5 to 3-10

black box and white box testing, 3-6
formal methods of verification, 3-10
integration testing, 3-8 to 3-9
system testing, 3-9 to 3-10
unit testing, 3-7 to 3-8

R
ranges of values for controls, 7-10 to 7-11
references, A-1 to A-2
report generation with SCC tools, 6-2, 11-27
required system configuration, 1-1
rings vs. enumerations, 7-9 to 7-10
risk management. See spiral model.

S
safeguarding applications, 3-1 to 3-2. See also

quality control.
SCC. See Source Code Control tools.
scheduling and project tracking, 5-1 to 5-8.

See also Source Code Control tools; VI
Metrics tool.

estimation, 5-1 to 5-6
COCOMO estimation, 5-6
function point estimation, 5-5 to 5-6
lines of code/number of nodes,

5-2 to 5-3
of effort, 5-4 to 5-6
problems with size-based metrics,

5-3 to 5-4
wideband Delphi estimation,

5-4 to 5-5
mapping estimates to schedules,

5-6 to 5-7
tracking schedules using milestones,

5-7 to 5-8
missed milestones, 5-8

sequence structures, 7-20 to 7-21
size-based metrics. See also VI Metrics tool.

lines of codes, 5-2 to 5-3
number of nodes, 5-3
problems, 5-3 to 5-4

software quali ty standards, 3-13 to 3-17
CMM, 3-15 to 3-16
FDA standards, 3-14
IEEE, 3-16 to 3-17
ISO 9000, 3-13 to 3-14
© National Instruments Corporation I-5 Professional G Developers Toolkit Reference Manual

Index
Source Code Control tools, 11-1 to 11-32
administration, 11-5 to 11-9

built-in system, 11-7
Edit Platform List, 11-8 to 11-9
Visual SourceSafe, 11-6

advanced features, 11-22 to 11-29
configuration, 11-2 to 11-10

administration, 11-5 to 11-9
local configuration (all users),

11-9 to 11-10
selecting system for source code

control, 11-3 to 11-5
work directory and platform

configuration, 11-10
features

built-in Source Code Control System,
11-3 to 11-4

Microsoft Visual SourceSafe for
Windows 95/NT, 11-5

third-party systems, 11-4 to 11-5
fil e management, 11-16 to 11-22

accessing previous versions of fi les,
3-3 to 3-4, 11-26 to 11-27

change control, 3-4 to 3-5
checking in fi les, 11-20 to 11-22
checking out fi les, 11-18 to 11-20
deleting files from SCC, 11-23
fil e properties, 11-18
fil e status, 11-17
History window for documenting

changes, 11-20
labeling versions of fi les for easy

retrieval, 11-27
managing project-related files, 3-3
master file list (sccfiles.lst),

11-25 to 11-26
retrieving fi les, 11-16 to 11-18
SCC user name, 11-22
tracking changes, 3-4

general concepts, 11-1
multiplatform issues, 11-29 to 11-32

cross platform source code
control, 11-29

fil ename limitations, 11-29 to 11-30
platform-dependent SCC files, 11-30
platform-specific fi les, 11-31
retrieving fi les for different

platforms, 11-32
variants of fi les for different

platforms, 11-31
overview, 3-3
project management, 11-10 to 11-16

adding extra files, 11-14 to 11-15
creating projects, 11-11 to 11-13
overview, 11-10 to 11-11
project groups, 11-15 to 11-16
removing fi les from projects,

11-13 to 11-14
updating projects, 11-13

quality control considerations, 3-2 to 3-3
report generation, 11-27 to 11-29
SCC File History, 11-24 to 11-25
System History, 11-25 to 11-26
user configuration

built-in system, 11-9 to 11-10
Visual SourceSafe, 11-9

using files instead of VI libraries, 11-2
Source Lines of Code (SLOCs) metric, 8-1.

See also size-based metrics.
SPARCstation installation, 1-3
spiral model, 2-10 to 2-12
standards. See software quality standards.
statistics. See VI Metrics tool.
stub VIs, 4-9
style guidelines, 7-1 to 7-29

block diagram, 7-17 to 7-25
adding common threads,

7-19 to 7-20
Code Interface Nodes (CINs), 7-25
data dependency, 7-19
error checking, 7-22 to 7-23
execution sequence, 7-19 to 7-21
labeling, 7-18 to 7-19
left-to-right layouts, 7-19
missing dependencies, 7-21
optimization, 7-24
Professional G Developers Toolkit Reference Manual I-6 © National Instruments Corporation

Index
sequence structures, 7-20 to 7-21
sizing and positioning, 7-23 to 7-24
wiring etiquette, 7-17 to 7-18

connector panes, 7-14 to 7-15
controls and indicators, 7-8 to 7-12

attribute nodes, 7-11
default values, ranges, and coercion,

7-10 to 7-11
descriptions, 7-8
enumerations vs. rings, 7-9 to 7-10
key navigation, 7-11 to 7-12
labels, 7-8 to 7-9
local variables, 7-12

front panels, 7-4 to 7-8
color, 7-6
consistency, 7-4
graphics and custom controls,

7-6 to 7-8
layout, 7-7
sizing and positioning, 7-8
text, 7-5

hierarchical organization of fi les,
7-1 to 7-4

directories (folders), 7-1 to 7-2
naming VIs, VI libraries, and

directories, 7-1 to 7-2
VI libraries, 7-3 to 7-4

icons, 7-15 to 7-16
problems with inconsistent developer

styles, 3-10 to 3-11
style checklist, 7-26 to 7-29

block diagram, 7-29
front panel, 7-27 to 7-28
VIs, 7-26 to 7-27

VI setup, 7-13
subVI interface statistics, 8-5
subVI library, documenting, 6-2 to 6-3
System History dialog box, 11-25
system testing, 3-9 to 3-10

T
technical support, B-1 to B-2
telephone and fax support, B-2
testing guideli nes, 3-5 to 3-10

black box and white box testing, 3-6
formal methods of verification, 3-10
integration testing, 3-8 to 3-9
system testing, 3-9 to 3-10
unit testing, 3-7 to 3-8

text, style guidelines, 7-5
top-down design, 4-2 to 4-3
tracking changes, 3-4
tracking projects. See scheduling and project

tracking; Source Code Control tools.

U
unit testing, 3-7 to 3-8
U.S. Food & Drug Administration (FDA)

standards, 3-14
user documentation. See documentation of

applications.
user interface statistics, 8-4

V
verification methods, 3-10. See also testing

guidelines.
VI libraries

avoiding with Source Code Control tools,
11-2

converting LLBs to directories,
10-1 to 10-2

documenting subVI l ibraries, 6-2 to 6-3
File Manager tool, 10-1 to 10-2
fil es in vi.l ib excluded from VI Metrics

tool, 8-5
hierarchy with VI libraries, 7-3 to 7-4
Windows 3.1 considerations, 7-3

VI Metrics tool, 8-1 to 8-5
dialog box, 8-1
fil es in vi.l ib, 8-5
number of nodes, 8-2
© National Instruments Corporation I-7 Professional G Developers Toolkit Reference Manual

Index
purpose and use, 8-1 to 8-2
saving metric information, 8-5
statistics, 8-3 to 8-5

block diagrams, 8-3 to 8-4
CIN/shared library statistics, 8-4
global/local statistics, 8-4
subVI interface statistics, 8-5
user interface, 8-4

VI setup, 7-13
VIs

description, as documentation, 6-5
hierarchy on disk, 7-1 to 7-2
style checklist, 7-26 to 7-27

Visual SourceSafe for Windows 95/NT. See
Microsoft Visual SourceSafe
for Windows 95/NT.

W
waterfall model, 2-5 to 2-8

modified, 2-8
white box testing, 3-6
wideband Delphi estimation, 5-4 to 5-5
Windows 3.1

restrictions on development (note), 1-1
saving VIs in l ibraries, 7-3
Source Code Control tools

unavailable, 11-2
Windows 95 and NT installation, 1-2
wiring tips, 7-17 to 7-18
Professional G Developers Toolkit Reference Manual I-8 © National Instruments Corporation

	Professional G Developers Toolkit Reference Manual...
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (U.S.)
	International Offices
	National Instruments Corporate Headquarters

	Contents
	About This Manual
	Organization of This Manual
	Software Engineering Concepts
	Professional Development Tools
	Appendices, Glossary, and Index

	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	Required System Configuration
	Installation and Configuration
	Installation
	Configuration

	Overview
	Features of the Toolkit

	Chapter 2 Development Models
	Common Development Pitfalls
	Lifecycle Models
	Code and Fix Model
	Waterfall Model
	Modified Waterfall Model
	Prototyping
	G Prototyping Methods

	Spiral Model

	Summary

	Chapter 3 Incorporating Quality into the Development Process...
	Quality Requirements
	Configuration Management
	Source Code Control
	Managing All Project-Related Files
	Retrieving Old Versions of Files
	Tracking Changes
	Change Control

	Testing Guidelines
	Black Box and White Box Testing
	Unit, Integration, and System Testing
	Unit Testing
	Integration Testing
	System Testing

	Formal Methods of Verification

	Style Guidelines
	Design Reviews
	Code Walkthroughs
	Postmortem Evaluation
	Software Quality Standards
	International Organization for Standards (ISO)�900...
	U.S. Food & Drug Administration (FDA) Standards
	Capability Maturity Model (CMM)
	Institute of Electrical and Electronic Engineers (...

	Chapter 4 Prototyping and Design Techniques
	Clearly Define the Requirements of Your Applicatio...
	Top-Down Design
	Example—A Data Acquisition System

	Bottom-Up Design
	Example—An Instrument Driver

	Designing for Multiple Developers
	Front Panel Prototyping
	Performance Benchmarking
	Identify Common Operations

	Chapter 5 Scheduling and Project Tracking
	Estimation
	Lines of Code/Number of Nodes Estimation
	Problems with Lines of Code and Numbers of Nodes

	Effort Estimation
	Wideband Delphi Estimation
	Other Estimation Techniques

	Mapping Estimates to Schedules
	Tracking Schedules Using Milestones
	Responding to Missed Milestones

	Chapter 6 Creating Documentation
	Developing Design-Related Documentation
	Developing User Documentation
	Documentation for a Library of SubVIs
	Documentation for an Application

	Creating Help Files
	VI and Control Descriptions
	VI Description
	Self-Documenting Front Panels
	Control and Indicator Descriptions

	Chapter 7 Using Consistent Style— The G Style Guide
	Hierarchy on Disk
	Hierarchy with VI Libraries

	Front Panels with Style
	Consistency
	Text
	Color
	Graphics and Custom Controls
	Front Panel Layout
	Sizing and Positioning Front Panels

	Controls and Indicators
	Descriptions
	Labels
	Enumerations vs. Rings
	Default Values, Ranges, and Coercion
	Attribute Nodes
	Key Navigation
	Local Variables

	VI Setup
	Connector Panes
	Icons
	The Block Diagram
	Wiring Etiquette
	Labeling
	Execution Sequence
	Left-to-Right Layouts
	Data Dependency
	Adding Common Threads
	Sequence Structures
	Watch Out for Missing Dependencies

	Check for Errors
	Sizing and Positioning of Block Diagrams
	Optimization
	Code Interface Nodes
	CIN Description Contents
	CIN Source Code

	Style Checklist
	VI Checklist
	Front Panel Checklist
	Block Diagram Checklist

	Chapter 8 VI Metrics Tool
	Additional Statistics
	Block Diagram Statistics
	User Interface Statistics
	Global/Local Statistics
	CIN/Shared Library Statistics
	SubVI Interface Statistics

	Files in vi.lib
	Saving Metric Information

	Chapter 9 Print Hierarchy Tool
	Chapter 10 File Manager Tool
	Chapter 11 Source Code Control Concepts
	General Source Code Control Tools
	Using Individual Files Instead of VI Libraries (LL...
	Source Code Control Configuration
	Selecting the Source Code Control System
	Features of the Built-In Source Code Control Syste...
	Features of Third-Party Source Code Control System...
	Microsoft Visual SourceSafe for Windows 95/NT

	Administration (Administrator Only)
	Administration of Visual SourceSafe
	Administration of the Built-In System
	Edit Platform List

	Local Configuration (All Users)
	User Configuration of Visual SourceSafe
	User Configuration of the Built-In System
	Work Directory and Platform Configuration

	Managing Source Code Control Projects
	Source Code Control Projects Overview
	Creating a Project
	Updating a Project
	Removing Files from a Project
	Adding Extra Files to a Project
	Project Groups

	Accessing Files
	Retrieving Files
	File Status
	File Properties

	Checking Out Files
	Use the History Window to Document Changes

	Checking In Files
	SCC User Name

	Advanced Features
	Deleting Files from SCC
	SCC File History
	System History
	Master File List (sccfiles.lst)

	Accessing Previous Versions of Files
	Built-In System
	Third-Party Systems

	Labeling Versions of Files for Easy Retrieval
	Creating Reports
	Built-In System
	Microsoft Visual SourceSafe

	Multiplatform Issues
	Cross Platform Source Code Control
	Filename Limitations
	Platform-Dependent SCC Files
	Platform-Specific Files
	Variants of a File for Different Platforms
	Retrieving Files for a Different Platform

	Appendix A References
	Appendix B Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	Documentation Comment Form

	Glossary
	A
	B
	C
	F
	I
	L
	P
	R
	S
	U
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Figures
	Figure 2�1. The Waterfall Model
	Figure 2�2. The Spiral Model
	Figure 3�1. Capability Maturity Model
	Figure 4�1. Mapping Pseudo-Code into a G Data Stru...
	Figure 4�2. Mapping Pseudo-Code into Actual G Code...
	Figure 4�3. Data Flow for a Generic Data Acquisiti...
	Figure 4�4. VI Hierarchy for the Tektronix 370A
	Figure 7�1. A Directory Hierarchy
	Figure 7�2. Top-Level VIs Listed at the Top of a V...
	Figure 7�3. A Mixture of Directories and VI Librar...
	Figure 7�4. Good Wiring in a Simple Block Diagram
	Figure 7�5. A Well-Placed Front Panel and Block Di...
	Figure 8�1. VI Metrics Tool Dialog Box
	Figure 9�1. Print Hierarchy Tool Dialog Box
	Figure 10�1. File Manager Tool Dialog Box
	Figure 11�1. G Source Code Control Tools Work with...

	Tables
	Table 2-1. Risk Exposure Analysis Example

